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Referees' comments: 
 
Referee #1 (Remarks to the Author): 
 
The authors have deployed a multi-omits approach to generate a spatially-resolved resource of gene 
expression and chromatin accessibility. The authors are commended on the work, which will no 
doubt be useful to many. The question is whether or not there are truly new insights that inform the 
biology of myocardial infarction. Certainly the spatial data helps delineate the specific populations of 
cells, and the interesting diversity of their responses. Could there be more of a concerted effort to 
quantitatively compare control to MI samples for example. As it is the presentation is sample to 
sample, and a much more extensive analysis could be deployed across the samples and cell types. 
For example, what are differentially expressed genes between a normal cardiomyocyte and the two 
types that are seen in the border zone. Is the myocardial trans-ventricular gradient of ion channels 
retained? Can one build a quantitative GRN that shows the retiring of CM or fibroblast GRNs? As it is 
the very rich dataset is not exploited to its maximum efficiency and unfortunately remains superficial 
in nature. 
 
I have some comments of a technical nature. 
 
1. It would be useful for the reader to have a diagram of the location of the samples in the heart, 
perhaps as a cartoon. Are these all LV free wall (no), so then where with respect to the overall 
anatomy of the heart are they from? 
 
2. The authors may want to use the co-integration feature of ArchR to help define their cell types. 
 
3. Myod1 (mentioned at bottom of P8) is not a cardiogenic TF and is not expressed in the heart. 
 
4. One cannot deplopy trajectory analysis without a time course. A “trajectory” can be created by 
linking different cell types to one another, but this analysis give the false impression that there is a 
“path”. Rather it only provides a measure of a cellular continuum. 
 
 
 
Referee #2 (Remarks to the Author): 
 
Kuppe et al. present single-nuclei and spatial transcriptomics based insights into molecular and 
cellular events related to human myocardial infarction (MI). Generating a spatio-temporal cell atlas 
of cardiac remodelling processes, the authors suggest specific cell subpopulation of cardiomyocytes 



 

 

 

and fibroblasts as well as specific signalling pathways to shape cell composition and architecture 
during injury, repair and remodeling. Through the integration of matched scATACseq data, the 
authors provide further mechanistic explanations of gene regulatory events and potential master 
regulators of the remodelling process. The study applies sophisticated technologies and state-of-the-
art computational tools to integrate, analyze and interpret their datasets in respect to prior 
knowledge and to generate testable hypotheses of disease-related processes and cellular states. 
Overall, the study advances our understanding of the biology of MI. However, the below comments 
could help to go further beyond the previously known players and to generate a more data-driven 
and robust view of the chain of cellular and molecular events after MI. 
 
Major comments: 
1. Nuclei isolation conditions can introduce significant biases in cell type composition. How does the 
composition in this work compare to the recently published heart atlases that use comparable 
technologies and sampling strategies? 
2. What was the rationale behind the cluster resolution that resulted in 24 transcriptional 
subpopulations? Is the resolution defined by data-driven approaches or related to the previous 
described biology of the heart. If the latter, the study might miss more subtle disease-specific 
events. 
3. The variable cell type composition between the samples can also be of technical origin. Do the 
authors have support that missing cell types are absent or less frequent in the respective samples? 
This can be tested using the spatial information or complementary profiling methods. This is 
important to clarify as subsequent comparative analysis can be affected by technical nuclei sampling 
biases. 
4. It is not clear what the authors mean by stating “our integrative single-cell analysis defined a 
consistent and non-redundant catalog of cell types that comprise the adult human heart”. Indeed, 
there is considerable variability between the samples and the fact that the authors used label 
transfer to annotate the snATACseq data makes the catalogue redundant between the modalities. 
5. The Visium platform has a limited size of the capture area. How was the targeted area pre-
selected? 
6. Instead of relying on the top DEG for the spatial localization of cell types, the authors should 
consider the use of deconvolution tools to better predict the composition of each capture site. This 
should result in a more accurate and unbiased spatial composition of the control and diseased 
hearts. 
7. In line, clustering the ST spots and subsequent annotation based on marker gene expression of 
selected cells type is a very hypothesis-driven strategy that could be strongly biased and exclude 
additional biological and potentially clinical relevant interpretation. Hence, the interpretation of the 
ST data (e.g. Figure 3) should follow a more data-driven strategy, such as spot deconvolution based 
on the matched snRNAseq datasets. 
8. The interpretation and validation of the endothelial cell states is confusing. No detailed 
interpretation is added for Endo2 and the selection of ISH markers is not clearly related to previous 
described cell state markers. In general, the MISTy analysis is intriguing and an additional validation 
of the co-localisation between Fibro2 and Macro2 would further underline the validity of the 
predictions. 
9. The authors argue that the lower gene count in ST and the reduced recovery of cell types from 
ischemic areas is due to an increased cell death. Although this is certainly expected given the 



 

 

 

underlying pathology, do the authors find any molecular proof for such assumption? 
10. It would be important to validate the zonation of cell type distribution in respect to the ischemic 
and scaring areas in multiple biological replicate samples (i.e. different donors), as a key finding in 
this work, and to extract general conclusion about composition dynamics. Some of the zonation 
events should be validated with alternative cell-resolution methods. This would be particularly 
interesting for the events of neo-angiogenesis and scaring-specific fibroblast populations. 
11. Integration efforts of the snATAC data to extract regulatory and mechanistic information is very 
sparse and anecdotal. Here, the authors should make an effort to better explain regulatory activity 
responsible for the tissue remodelling. 
12. The central regulatory role of NFE2L1 in cardiomyocytes 1 is intriguing, but entirely based on 
correlation analysis and prediction based on binding motifs. Since the authors highlight NFE2L1 as 
potential key regulator to derive disease-specific cardiomyocyte subpopulations, an experimental 
validation of the regulatory role of NFE2L1 in cardiomyocytes would be appreciated. 
 
Minor: 
This statement is too broad for the related section: “In summary, the data indicated distinct spatial 
gene regulation in response to the ischemia associated cell-death with gene regulation driving the 
acute cardiac injury response.” 
 
 
 
 
Referee #3 (Remarks to the Author): 
 
This study by Kuppe et al. investigates the cellular and local gene expression changes in response to 
ischemic injury in human heart samples at different time points after injury. They do so by 
performing single cell sequencing, ATAC sequencing and spatial transcriptomic profiling and 
different bioinformatic approaches to further mine the data. 
 
While these are all state-of-the art methods and bioinformatic approaches that provide insightful 
data there are currently several issues with the experimental design and the presented data that 
make it difficult to determine the value and generalizability of the findings. 
 
Major comments 
- A major concern is the reproducibility and validity of the data. The authors have an n=1 for the 
different conditions (including control), except for the time point more immediate after myocardial 
infarction. Here they have tissue from both 2 and 5 days after infarction that represent the more 
immediate response after injury, however these samples seem to vary a lot from each other in 
cellular composition, local remodeling and gene expression changes and are also representing 
different regions. 
- Is the sample for spatial transcriptomic take transmurally? The manuscript would benefit from a 
better description of the exact sample collection procedure. 
- Where are the data for the ischemic zone from patient 3 in Extended Data Figure 1 and 3d? 
- It is unclear how well the different datasets for patient 2 and 3 overlap. This should be clarified 
more as these are the only 2 patients from the same condition/group. Are the same cell cluster 



 

 

 

found when comparing these 2 patients and are the same gene expression correlations found 
between the 2? It would be better for clarity to compare the same type of analyses for the different 
samples. 
- It currently is unclear which portion of the control heart was taken for the analyses. 
- The authors combine spatial transcriptomics on a 10um section with snRNA seq and ATAC seq from 
an adjacent portion of the heart. However, the results of these three give very different cellular 
compositions and gene expression profiles. The spatial transcriptomic for example shows an 
overrepresentation of cardiomyocytes (likely because of their size), while the cellular composition 
based on snRNA seq versus ATAC seq also gives a very different image (which can for example be 
seen in Extended Data Fig 3d). What would the Extended Data Fig 3d look like for ATAC seq only? If 
the dataset differ so much it is hard to generate an integrative molecular map as the authors 
indicate in the abstract. 
- How many cells are roughly represented per spot in the spatial transcriptomics? 
- The snRNA seq and ATAC seq data generated on samples taken 2 or 5 days after ischemic injury 
appear to be strongly influenced by the presence of cell death and only 4 cell types can be 
distinguished. However, in looking at extended Data Figure 6e all 4 cell types appear to be 
expressing TNNT2, a cardiomyocyte marker. 
- While the validation studies in heart failure samples and functional follow-up studies support the 
relevance of the sequencing data, Runx1 has already been linked to TGFb signaling and 
myofibroblast differentiation and fibrosis. 
- How do these snRNA seq data compare to previously published studies on human heart tissue? 
 
 
 
Referee #4 (Remarks to the Author): 
 
Tanevski et al report the results of deploying cutting edge spatial and single cell genomics analyses 
on precious, rare human ex vivo cardiac samples derived from individuals post myocardial infarction. 
Certainly the rarity of this sample set, and the promise of the technological tools used, intrigued and 
excited me about the possible biological insights offered. However, after reading the paper carefully 
I remain unsure what the authors have actually learned from all of this data generation. Is this paper 
reporting a biological discovery? I do not study heart biology, so I am genuinely uncertain, but the 
organization of the paper, and the details of the claims made (see specific points below) do not 
suggest that a clear, novel insight about myocardial infarction has emerged from this work. And if 
this biological insight has not been gained, and this manuscript is being presented as a reference 
atlas of MI, then greater effort needs to be made in codifying, organizing and releasing these data to 
the scientific public for consumption (for example, the generation of a web-based tool for plotting 
genes, performing individual analyses, etc). 
 
In general, a lot of analyses presented are suggestive, but not clearly demonstrative, of the claims. In 
particular, there is a logical leap made by the authors between the results of MISTy and the 
conclusion that the genes identified are somehow directly mediating interactions between cell 
types. The algorithm is uncovering spatial correlations at different length scales, with certainly could 
suggest a causal interaction, but may also simply by a correlative effect due to, for example, the 
developmental patterning of the tissue (certain cells get positioned closer to others, but do not 



 

 

 

necessarily interact in a causal fashion). Although certainly many of the nominated interactions are 
intriguing, it’s really hard to know what the reader should do with these specific examples, without 
some sort of perturbation in an animal or organoid model to provide support for causal mechanisms. 
 
Here are some specific points where I identified novelty, but where additional follow up work might 
help to bolster it to a solid mechanistic hypothesis: 
 
One very intriguing insight the authors report is the presence of additional molecular/cell state 
heterogeneity in acute MI tissue beyond what can be seen histologically (Fig 4). This seems like a 
great example of how especially the spatial data was able to nominate additional molecular 
processes beyond what can be observed by conventional pathology, but the analysis ends at 
suggestive correlations. Can the authors take this a step further, and perhaps nominate a small 
number of markers for these heterogeneous states, and perform immunohistochemistry on a larger 
set of cardiac MI samples (for example FFPE samples), more deeply explore whether there are 
diagnostic, prognostic, or other clinically relevant implications for these different identified cell 
states? 
 
The analysis presented does not specifically point towards a graded, pseudotime-ordered 
progression in the fibroblasts. In the UMAP in Fig 6a, I see an unclear trajectory structure, perhaps 
with branching occurring, but it is also possible the pseudotime model is overfitting and the actual 
gene expression landscape is far more complex (multiple distinct populations, or multiple transitions 
occurring within multiple populations). The heat map presented would also appear to support this—
I do not see a whole lot of marker overlap, but rather what appears to be three rather distinct 
populations with few examples of cells in transition. What additional evidence is there to support 
that these fibroblasts are all progressing along a single trajectory? 
 
The final insight of the paper, for which there is one in vitro validation experiment performed—is the 
nomination of RUNX1 as a key effector of myofibroblast differentiation. Again, I am not in this field, 
but a quick google search for RUNX1 and myofibroblast did reveal literature that suggests this insight 
is not entirely novel. For example, how does the observation made by the authors meaningfully 
differ from the work reported in PMID 32341028 and PMID 25313057? 
 
 
Smaller points: 
 
- Some cardiomyocytes are multinucleated. Can the authors comment on how snRNA-seq and 
snATAC-seq might be affected by the (likely) additional correlation between nuclei derived from the 
same cell? 
- Have the authors tried localizing cardiac-associated GWAS signals to their clusters and spatial data? 
This might be an interesting way of leveraging the human data in away that is unique, since it may 
be much harder to make credible conclusions about this from existing mouse datasets. 
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R1: NATURE 2020-11-21461  
 
We would like to thank all the reviewers for their careful assessment of our manuscript which 
we feel has helped us significantly to improve the impact of our work. We have taken all the 
comments into account and present a substantially modified and improved manuscript, 
providing extensive new data in response to the reviewers comments.  
 
In response to the reviewers’ comments, we have now included the following salient additional 
data and analysis: 

1. We have increased the multi-omic dataset considerably to a total of 28 human multi-
omic myocardial datasets of patients following acute myocardial infarction including 
single nuclei (sn) RNA-seq, snATAC-seq and spatial transcriptomics (Visium) 
spanning 196,497 nuclei (snRNA-seq), 46,086 nuclei (snATAC-seq) and 91,517 spots 
(spatial transcriptomics) (New Fig.1; New Extended Data Fig. 2a-c). 

2. We additionally added three novel, unpublished snRNA-seq samples of human acute 
myocardial infarction as external reference datasets (including 19,722 cells; New 
Extended Data Fig. 4f-g). 

3. We included single-cell RNA-seq (scRNA-seq) data from a myocardial infarction time-
course lineage tracing experiment of PDGFRβCreER;tdTomato mice (n=4), time 
points 0, 4, 7 and 14 days after MI (including 32,852 cells) to compare fibroblasts states 
between human and mouse and verify the directionality of the trajectory analysis of 
myofibroblast differentiation (New Extended Data Fig. 12i-l). 

4. We revised the snRNA-seq and snATAC-seq data integration to identify major cell 
types using state-of-the-art methods including Harmony and ArchR (as suggested by 
the reviewers). Instead of annotating the cell types sample by sample as in our 
previous analysis, for each modality we first integrated the data from all samples and 
then clustered the cells. Clusters were annotated independently for snRNA-seq and 
snATAC-seq. To validate major cell-type annotations, we performed cross-modality 
comparison between snRNA-seq and snATAC-seq data within our samples, and 
between the human heart cell atlas that profiled healthy samples and an external 
reference snRNA-seq dataset of ischemic samples (point 2 above) (New Extended 
Data Fig. 4a,e).  

5. We now provide extensive descriptions of the spatial transcriptomics slides that include 
per spot: i) cell-type compositions (estimated using the deconvolution method 
cell2location (Kleshchevnikov et al. Nat Biotech 2022, PMID: 35027729)), leveraging 
the paired snRNA-seq data, as suggested by reviewer #2, and ii)  signalling pathway 
activities, transcription factor (TF) binding activities (mapped from snATAC-seq data) 
and GWAS signals (New Fig. 1h, New Extended Data Fig. 5j) (as suggested by 
reviewer #4). Moreover, we used computational modelling to identify spatial cell-type 
dependencies and relations to signalling pathway activities (New Fig. 2e-g, New 
Extended Data Fig. 7a-c). Finally, we described cardiac “niches”, representing 
structural building blocks that are shared between different slides and could facilitate 
patient comparison. These niches were generated by clustering spatial transcriptomics 
spots using cell-type compositions (New Fig. 2 a-d) or gene expression profiles (New 
Fig. 3) (referred to in the text and revision notes as molecular niches) (New Fig. 1h-j; 
New Fig. 2a-i). 

6. We revised the comparative analysis of the different sampled regions and patient 
groups at the molecular, compositional, and spatial level. i) We contrasted the 

Author Rebuttals to Initial Comments:
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compositions of each major cell-type across patient groups with information provided 
by all omic layers (New Fig. 2i). ii) We contrasted the compositions of niches from 
spatial transcriptomics and demonstrated consistent remodelling events characteristic 
of fibrotic and ischemic samples (New Fig. 2j-o). iii) We identified molecular differences 
in myogenic regions that differentiated control samples from border zones and remote 
zones of myocardial infarction patients (New Fig. 3g-i). 

7. We have revised our integration strategy to define cell-states of cardiomyocytes, 
fibroblasts, endothelial and myeloid cells (New Fig. 4-6). Compared to our previous 
analysis, we here first integrated the data from all samples and modalities for each of 
the major cell types mentioned above and then performed sub-clustering analysis 
(New Fig. 4a; New Fig. 5a; New Fig. 6a and New Fig. 6j). We quantified the importance 
of cell microenvironments in the prediction of disease relevant cell-states from spatial 
transcriptomics and performed in situ hybridization validations of the cell-state 
zonations in an independent patient cohort (235 images from 43 patients) (New Fig. 
4c; New Fig. 6n; New Extended Data Fig. 9d; New Extended Data Fig. 14g, h, i, and 
New Extended Data Fig. 15g).  

8. We built quantitative enhancer-based gene regulatory networks (eGRN) using the 
integrated snRNA-seq and snATAC-seq data by combining information from 
transcription factor (TF) binding activity, TF expression, enhancer-to-promoter links, 
and target gene expression for both cardiomyocytes (New Fig. 4h-j) and fibroblasts 
(New Fig. 6g-h) (as suggested by reviewer #1). We identified important putative 
regulators (i.e., TFs) using network analysis. We were able to map predicted TFs and 
target genes into space to support their role in cardiac remodelling and fibrogenesis.   
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Referee comments: 
  
Referee #1: 
The authors have deployed a multi-omits approach to generate a spatially-resolved resource 
of gene expression and chromatin accessibility. The authors are commended on the work, 
which will no doubt be useful to many. The question is whether or not there are truly new 
insights that inform the biology of myocardial infarction. Certainly the spatial data helps 
delineate the specific populations of cells, and the interesting diversity of their responses. 
Could there be more of a concerted effort to quantitatively compare control to MI samples for 
example. As it is the presentation is sample to sample, and a much more extensive analysis 
could be deployed across the samples and cell types. For example, what are differentially 
expressed genes between a normal cardiomyocyte and the two types that are seen in the 
border zone. Is the myocardial trans-ventricular gradient of ion channels retained? Can one 
build a quantitative GRN that shows the retiring of CM or fibroblast GRNs? As it is the very 
rich dataset is not exploited to its maximum efficiency and unfortunately remains superficial in 
nature.  
 
We thank the reviewer and appreciate the overall positive comments. We agree that a 
comparison between the different time points and sample groups is necessary to gain new 
insights into the biology of human myocardial infarction and the different cell populations 
involved in the heart remodelling processes. For this reason, we have increased the number 
of tissue samples in this study from initially 8 to 28 from 20 patients over four different cardiac 
tissue regions, as well as control samples (control = 4, ischemic region = 12, border zone = 3, 
remote zone = 6, fibrotic zone = 6) and additionally 3 snRNA-Seq datasets from human acute 
myocardial infarction for cross-validation. 28 of these samples have a multi-omic profiling with 
single nuclei (sn) RNA-seq, snATAC-seq, and spatial transcriptomics (New Fig. 1a, New 
Extended Data Fig. 1-3). In addition, we also included scRNA-seq from a myocardial infarction 
time-course lineage tracing experiment of PDGFRβ-reporter mice at distinct time points after 
MI which was used in our trajectory analysis of myofibroblast differentiation.  
 
This extended dataset allowed us to describe heart remodelling processes by  performing 
quantitative comparisons of different sample groups at the compositional, molecular, and 
spatial level, as the reviewer suggested. We have included these results in two new sections: 
“Spatial and compositional variation of histological human cardiac tissue classifications” (New 
Fig. 2) and “Molecular variation of human cardiac tissue following acute myocardial infarction” 
(New Fig. 3).  
 
Additionally, we have redefined  the sub-clusters for several major cell-types including 
cardiomyocytes (New Fig. 4), endothelial cells (New Fig. 5), fibroblasts, and myeloid cells 
(New Fig. 6) by integrating snRNA-seq and snATAC-seq from all samples and associated 
them with the different disease stages. We mapped the different functional states of cell-types 
to spatial transcriptomics to investigate their spatial relationship with other major cell types 
and their changes in different patient groups (New Figs. 4k-o, 5e-f, 6l). We included these 
results in three new sections: “Identification of disease specific cardiomyocyte states ” (New 
Fig. 4), “Analysis of endothelial cell heterogeneity at spatial resolution ” (New Fig. 5), and 
“Spatial organisation of  fibro-myeloid cell states in cardiac remodelling” (New Fig. 6). 
Regarding cardiomyocytes functional states, we describe 5 different cell-states with differential 
compositions between samples. The top 10 differentially expressed genes of the newly 
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described cardiomyocyte (CM)-states (vCM1-5) are shown in New Extended Data Figure 9b 
and the complete results are provided in New Supplementary Table 10.  Among other findings, 
we observed a higher correlation between ion-channel related gene expression and the 
marker expression of “healthy” vCM1 gene markers compared to the expression of 
“stressed/failing” vCM3 (New Extended Data Fig. 9e-g).  
 
As suggested by the reviewer we now built quantitative enhancer-based gene regulatory 
networks (eGRN) using the integrated snATAC-seq and snRNA-seq data for both 
cardiomyocytes (New Fig. 4h-j) and fibroblasts (New Fig. 6g-h). This allowed us to describe 
regulators of different cell-states found in these major cell-types. Moreover, we were able to 
map the predicted regulators and target genes to spatial transcriptomics and could confirm 
that these regulatory programs drive tissue patterns associated with cardiac remodelling and 
fibrogenesis.  
 
We have reorganised the manuscript so that the presentation of results not only highlights the 
richness of the data but also shows how the different combination of omics technologies and 
resolutions can help describe myocardial remodelling and show the relations between celltype 
location, organisation and function.  
 
I have some comments of a technical nature.  
 
1. It would be useful for the reader to have a diagram of the location of the samples in the 
heart, perhaps as a cartoon. Are these all LV free wall (no), so then where with respect to the 
overall anatomy of the heart are they from?  
 
We agree with the reviewer on this important point. We have now increased the overall 
datasets of our atlas including in total 31 datasets (28 multi-omic datasets of snRNA-
seq/snATAC-seq/Visium and 3 snRNA-seq) of human myocardial infarction. 20 of these 
datasets were generated from the left ventricular (LV) free-wall and 11 from LV-apex. We have 
now included a diagram of where the samples have been taken as suggested by the reviewer 
and additional macroscopic and microscopic images of all samples from which these were 
available (New Extended Data Fig. 1). Additionally, we provided all available clinical covariate 
data including location of the biobank, tissue localization, infarct location and a detailed 
pathologists’ description of the tissue annotation in New Supplementary Table 1 of all H&E 
stainings of the previous and added spatial transcriptomics datasets.     
 
2. The authors may want to use the co-integration feature of ArchR to help define their cell 
types.  
 
We appreciate this suggestion and have now used ArchR (Granja et al., Nat Gen 2020, PMID: 
33633365) to analyse our snATAC-seq data from all samples. ArchR was not readily available 
when this project started (New Extended Data Fig. 4a for detailed workflow). Briefly, we used 
ArchR to filter the low-quality cells based on the number of unique fragments (>3,000) and 
transcriptional start site (TSS) enrichment score (>4). We also used ArchR to remove doublets 
for each snATAC-seq library. We used a non-negative factorization method, which was 
recently proposed by us (scOpen) for snATAC-seq dimension reduction (Li. et. al., Nat Com 
2021, PMID: 34737275). The data were integrated using the Harmony algorithm (Korsunsky, 
I. et. al. Nat Methods, PMID: 31740819) and clusters were obtained using graph-based 
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algorithms. To annotate the clusters, we identified marker genes based on gene activity scores 
estimated by ArchR. To further verify our annotations, we also integrated the snATAC-seq 
with snRNA-seq using the Seurat package and observed a high similarity across the 
modalities (New  Extended Data Fig. 5b).    
 
3. Myod1 (mentioned at bottom of P8) is not a cardiogenic TF and is not expressed in the 
heart.  
 
We thank the reviewer for pointing this out. We previously selected Myod1 by first predicting 
the transcription factor binding sites (TFBSs) and then compared the chromatin accessibility 
of these TFBSs between different cell types as measured by snATAC-seq. Now, by using our 
extended dataset, we again observed that cardiomyocytes showed a higher chromatin 
accessibility around the binding sites of Myod1 compared with other cell types, consistent with 
our previous results  (see Reply Letter Fig. 1a). However, since this approach was solely 
based on chromatin accessibility profiles, it was not able to distinguish TFs that have similar 
motifs, which can cause false positives. Indeed, we observed no expression of Myod1 in our 
snRNA-seq (only 10 cells expressed Myod1 from the unfiltered integrated data across all 
samples). For this reason, we now removed Myod1 from the revised manuscript. Also, our 
new approach for estimations of eGRNs considers both gene expression and chromatin 
accessibility of TFs, which avoids this issue.   
 

 
 
Reply Letter Fig. 1.  (a)  Footprinting profile of Myod1 between different major cell types. The 
x-axis represents distance from the Myod1 motif centre and the y-axis represents the average 
snATAC-seq signal around the predicted binding sites of Myod1. Colours refer to different cell 
types. 
 
 
4. One cannot deplopy trajectory analysis without a time course. A “trajectory” can be created 
by linking different cell types to one another, but this analysis give the false impression that 
there is a “path”. Rather it only provides a measure of a cellular continuum. 
 
We appreciate the suggestion by the reviewer and agree that in principle a trajectory analysis 
should only be done on time course and disease progression data. Indeed, a trajectory across 
cell types by itself does not suggest a direction (i.e., the assignment of start and end cells along 
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the predicted pseudotime can be arbitrary). The current manuscript now has two cellular 
continuum analyses, leveraging the clinical and temporal information: one involving 
cardiomyocyte remodelling and another including fibroblast to myofibroblast differentiation.  
We added multiple analyses and novel data to justify the direction of these analyses. 
 
We have now increased the overall dataset to provide data from different human disease 
groups (myogenic group comprising control specimens, remote zone and border zone as well 
as ischemic and fibrotic specimens) and time points. Furthermore clinical data of these 
groupings, e.g. time of tissue sampling after initial symptoms of the myocardial infarction, allow 
us to better characterise MI disease progression (New Fig. 1a-b).  
 
To find sub-clusters of cardiomyocytes (CM) and fibroblasts (Fib), we first integrated the single 
nucleus data from multiple modalities (i.e., snRNA-seq and snATAC-seq) and samples, and 
performed sub-clustering analysis. For cardiomyocytes, we identified five states (vCM1-5) and 
observed significant up-regulation of ANKRD1 and NPPB in vCM3 (New Fig. 4a-b). Since both 
ANKRD1 and NPPB have been reported to be upregulated in the border zone after myocardial 
infarction in mice (Mikhailov, A. T., & Torrado, M. 2004, Int J Dev Biol PMID: 18956313; Hama, 
Norio, et al., Circulation 2020, PMID: 7664440), we annotated this sub-cluster as ''stressed'' 
CM state. Comparison of cell proportions (including snRNA-seq and snATAC-seq data) 
revealed that this ''stressed'' ANKRD1+/NPPB+ vCM3 was significantly enriched in the 
ischemic samples, while the “healthy” vCM1 was enriched in the myogenic samples (New Fig 
4d; New Extended Data Fig. 9h). Additionally, we identified a NPPB- but ANKRD1+ vCM2-
state, which we annotated as “intermediate” based on expression of these marker genes and 
the fact that this state was associated with both myogenic and ischemic samples (New 
Extended Data Fig. 9e). Of note, ANKRD1, a transcription co-inhibitor and a member of the 
titin-N2A mechanosensory complex that translocates to the nucleus in response to stress, is 
known to be upregulated in cardiac failure and hypertrophy (Aihara et al., Hypertension 2000 
PMID:10904011; Miller et al., J Mol Bio 2003 PMID: 14583192). We validated the three main 
cardiomyocyte states (vCM1-3) by in-situ hybridization using TNNT2, NPPB and ANKRD1 
(New Fig. 4c; New Extended Data Fig. 9d). Quantification of the in-situ hybridisation revealed 
in an independent cohort of 98 human cardiac tissue sections from 17 patients a significant 
enrichment in tissue following human myocardial infarction as compared to control tissue (non-
transplanted donor hearts) providing evidence for the directionality of the cellular continuum  
(New Fig. 4c-d, New Extended Data Fig. 9d). We thus defined vCM1 as origin, vCM2 as 
intermediate, and vCM3 as the terminal cardiomyocyte state and inferred a cellular continuum 
from vCM1 to vCM3 using the function addTrajectory from ArchR based on the diffusion map 
representation (New Extended Data Fig. 10a).   
  
For fibroblasts, we identified four cell states (Fib1-4) (New Fig. 6a). The Fib1 state 
demonstrated marker gene expression including SCARA5 and PCOLCE2, which we have 
previously identified in myofibroblast progenitor cells of human kidney fibrosis (Kuppe et al., 
Nature 2021, PMID: 33176333). The Fib2 state revealed known marker gene expression 
reminiscent of myofibroblasts including POSTN, TNC and COL1A1 (New Fig. 6b, New 
Extended Data Fig. 12a-b) and also showed the highest expression of extracellular matrix 
(ECM) genes (New Extended Data Fig. 12c). Spatial analysis of the marker gene for these two 
fibroblast states (New Fib1+2) revealed a mutually exclusive gene expression pattern across 
the spatial transcriptomic slides (New Fig. 6c; New Extended Data Fig. 12f). Compositional 
comparison between the defined patient groups revealed a significant enrichment of Fib1 in 
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myogenic samples and Fib2 (myofibroblasts) in ischemic samples. To further understand the 
differentiation of fibroblasts and to experimentally validate the findings of the computationally 
inferred pseudotime trajectories, we performed a transgenic mouse experiment using 
PDGFRβCreER;tdTomato inducible fate-tracing of all mesenchymal cells in myocardial 
infarction (LAD ligation) with subsequent scRNA-sequencing of tdTomato sorted (FACS) cells 
at different timepoints (day 0, 4, 7, 14) (New Extended Data Fig. 12i-l). We integrated and 
clustered the cells from all timepoints. To annotate the clusters, we integrated the mouse and 
human fibroblasts and performed label transfer using Seurat, uncovering three sub-clusters in 
mouse data (i.e., Fib1-3) (New Extended Data Fig. 12m). We observed that the Fib1 
(SCARA5+) population decreased over time while the Fib2 (POSTN+) population increased 
and showed a higher ECM score in all time points (New Extended Data Fig. 12o-p). Based on 
these observations, we inferred a pseudotime trajectory from Fib1 to Fib2 (myofibroblasts) in 
the human samples which was further supported by an increased enrichment of extracellular 
matrix (ECM) score and of ECM-related biological Gene Ontology (GO) processes (New 
Extended Data Fig. 12q).  
 
These analyses were used as the basis of the eGRNs (see above), which in turn explained 
molecular changes associated to cardiac remodelling and fibrogenesis detected in spatial 
transcriptomics. We additionally adjusted the paper accordingly to clarify that our main 
objective is to analyse cellular disease states in a cellular continuum and added the following 
sentences: 

 
“[...] To this end, we paired the cells between snATAC-seq and snRNA-seq data and studied 
gene-regulatory changes along the cellular continuum from vCM1 to vCM3 (Extended Data 
Fig. 10a).[...]”  

 
“[...] To precisely understand differentiation trajectories of fibroblasts and transfer this 
knowledge to the human data we performed inducible lineage tracing in mice using the pan-
mesenchymal Cre driver PdgfrβCreER combined with scRNA-seq at different time points 
following myocardial infarction (Extended Data Fig. 12i-l). [...]”. 
 
  
Referee #2: 
Kuppe et al. present single-nuclei and spatial transcriptomics based insights into molecular 
and cellular events related to human myocardial infarction (MI). Generating a spatio-temporal 
cell atlas of cardiac remodelling processes, the authors suggest specific cell subpopulation of 
cardiomyocytes and fibroblasts as well as specific signalling pathways to shape cell 
composition and architecture during injury, repair and remodeling. Through the integration of 
matched scATACseq data, the authors provide further mechanistic explanations of gene 
regulatory events and potential master regulators of the remodelling process. The study 
applies sophisticated technologies and state-of-the-art computational tools to integrate, 
analyze and interpret their datasets in respect to prior knowledge and to generate testable 
hypotheses of disease-related processes and cellular states. Overall, the study advances our 
understanding of the biology of MI. However, the below comments could help to go further 
beyond the previously known players and to generate a more data-driven and robust view of 
the chain of cellular and molecular events after MI.  
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We thank the reviewer for the overall very positive evaluation of our work and appreciate the 
suggestions made by the reviewer to further improve our manuscript.  
 
Major comments:  
1. Nuclei isolation conditions can introduce significant biases in cell type composition. How 
does the composition in this work compare to the recently published heart atlases that use 
comparable technologies and sampling strategies?  
 
We thank the reviewer for this important question. We have now compared the cell-types of 
our intact myocardial tissue specimens (remote zones, border zones, and controls) with the 
reported cell-types of the single nuclei samples in the healthy human cardiac cell atlas by 
Litvinuková et al. (Nature 2020, PMID: 32971526) in terms of molecular profiles and cellular 
compositions (New Extended Data Fig. 4e). We observed a significant overlap between the 
marker genes inferred from these two datasets for the same cell types and a significant 
correlation (Pearson correlation = 0.88, p-value = 0.0016) between the median cell-type 
composition across patients of the two datasets (New Extended Data Fig. 4e). Additionally, 
we compared the cell-types of the  ischemic samples with a novel validation dataset of three 
human ischemic samples from an independent cohort we now include in our analysis (New 
Extended Data Fig. 4f). Again, marker genes overlapped significantly and the Pearson 
correlation between the median cell-type compositions across patients of the two atlases was 
0.79 (p-value = 0.0035) (New Extended Data Fig. 4g). These results suggested that significant 
biases could not be  detected in our data compared to already published healthy human heart 
single cell atlas data and samples from acute myocardial infarction patients.  Overall, we agree 
that nuclei isolation does potentially lead to biases in regards to distinct immune cells as 
previously described (Denisenko et al., Genome Biol. 2020, PMID: 32487174). Processing of 
non-frozen, fresh, human myocardial tissues from acute infarction patients with tissue 
quantities that allow multi-omic profiling including single-cell RNA-Seq, single-cell ATAC-Seq 
and spatial transcriptomics was however not possible. Overall our comparative analysis 
revealed a high degree of correlation with previously published heart atlases.   
 
In response to this important point we have added the following paragraph to the revised 
manuscript:  
 
“[...] To validate the annotations, we compared the data with a recent study on healthy human 
hearts7 and an independent novel dataset of ischemic heart samples (n=3, part of this study) 
and observed a high agreement and correlation in terms of molecular profiles and cellular 
composition (Extended Data Fig. 4e-g). Of note, the cycling cells were also captured in the 
independent ischemic dataset (Extended Data Fig. 4f).[...]”  
 
2. What was the rationale behind the cluster resolution that resulted in 24 transcriptional 
subpopulations? Is the resolution defined by data-driven approaches or related to the previous 
described biology of the heart. If the latter, the study might miss more subtle disease-specific 
events.  
 
The reviewer raised a valid point that we have now investigated in detail. In our previous 
manuscript, we first clustered the cells from snRNA-seq data using a graph-based clustering 
method from Seurat with the default resolution of 0.8 and annotated the clusters using 
canonical markers. This analysis was done for each sample (n = 8) independently and 
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identified a distinct number of cell types (including sub-clusters) per sample. To unify the labels 
across samples, we then performed hierarchical clustering based on cluster-specific pseudo-
bulk transcriptional profiles from all samples and defined 24 clusters based on prior knowledge 
of the heart (Litviňuková, M. et al., Nature 2020, PMID: 32971526; Wang, L. et al. Nat Cell Biol 
2020, PMID: 31915373; Tucker, N. R. et al., Circulation PMID: 32403949). We transferred the 
labels from snRNA-seq to snATAC-seq data (Reply Letter Fig. 2a). 
 
However, we realised that this approach had the following limitations when we increased our 
dataset: 

● It is impractical to apply this method to a large number of samples, as our extended 
dataset 

● The results can be affected by batch effects since no batch-correction is performed 
prior to clustering 

● The rare cell types might be hidden due to the low number in individual samples.  
 
 

 
Reply Letter Fig. 2. (a) Computational workflow used for cell annotation in our previous 
manuscript. 
 
We now have improved the computational strategy in our revised manuscript to identify major 
cell types and states in the snRNA-seq and snATAC-seq data (New Extended Data Fig. 4a). 
 
To identify major cell types: 

● First, we integrated the data from all samples and corrected batch effects using the 
Harmony algorithm (Korsunsky et al., Nat Methods 2019, PMID: 31740819) and 
clustered the cells using the graph-based clustering approach from Seurat with a 
resolution of 1 to generate a large collection of clusters (New Extended Data Fig. 4b 
and New Extend Data Fig. 5a). This was done for snRNA-seq and snATAC-seq 
independently. 

● Second, we filtered the clusters based on data quality and obtained in total 30 and 25 
clusters for snRNA-seq and snATAC-seq, respectively (New Extended Data Fig. 4b 
and New Extended Data Fig. 5a). 

● Then, we identified cluster-specific marker genes for each cluster. For snATAC-seq 
data, we used the gene activity score as estimated by ArchR. 

● Finally, we annotated the clusters based on canonical markers from literature 
(Litviňuková, M. et al., Nature 2020, PMID: 32971526; Wang, L. et al., Nat Cell Biol  
2020, PIMD: 31915373; Tucker, N. R. et al., Circulation PMID: 31915373). The clusters 
expressing similar marker genes were merged. This uncovered ten and eight major 
cell types for snRNA-seq and snATAC-seq, respectively (New Fig. 1d and New Fig. 
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1f). The cell-type-specific markers are provided in Supplementary Table 8 (from 
snRNA-seq) and 9 (from snATAC-seq).  

 
To identify cell states for cardiomyocytes, endothelial cells, fibroblasts, and myeloid cells 
across multiple samples and modalities: 

● For each major cell type mentioned above, we integrated the snRNA-seq and snATAC-
seq data using Seurat and corrected the batch effects using the Harmony algorithm 
(New Extended Data Fig. 9a; New Extended Data Fig. 11a; New Extended Data. 12a; 
New Extended Data Fig. 14a). 

● Next, we clustered the cells using the graph-based clustering approach from Seurat 
with a high resolution (i.e., 0.9 for fibroblasts and endothelial cells and 1 for 
cardiomyocytes and myeloid cells )to generate a large number of clusters to capture 
subtle disease-specific events. We excluded the clusters that were (1) enriched in a 
single sample; (2) enriched in a single modality  (3) having low data quality; (4) having 
a high doublet score. 

● Finally, we merged the clusters based on cluster-specific marker genes and uncovered 
5 states for cardiomyocytes, 5 states for endothelial cells, 4 states for fibroblasts, and 
5 states for myeloid cells. The markers for these states are provided in Supplementary 
Table 8, 10, 11, and 13. The statistical results for sub-clustering analysis were provided 
in Supplementary Table 16. 

 
It is worth pointing out that mapping cell types and states at a particular level of resolution of 
interest remains a challenge for single-cell data (Lähnemann et al., Genome Biol 2020, PMID: 
32033589) and there is no consensus on the correct method for choosing the resolution of 
clustering (Kiselev et al., Nat Rev Genet 2019, PMID: 30617341). We therefore believe that 
our current approach (i.e., generating a large number of clusters using a high resolution and 
then merging them manually based on prior knowledge) is appropriate given the state-of-the-
art and the complexity of our data.  
 
3. The variable cell type composition between the samples can also be of technical origin. Do 
the authors have support that missing cell types are absent or less frequent in the respective 
samples? This can be tested using the spatial information or complementary profiling 
methods. This is important to clarify as subsequent comparative analysis can be affected by 
technical nuclei sampling biases.  
 
We thank the reviewer for this important suggestion. We agree that cell type compositions can 
show technical variability that could bias our interpretations, especially in our previous analysis 
where we analysed the data sample by sample. We have now increased the overall numbers 
of samples per patient group and region that allowed a thorough comparison of the cell-type 
compositions detected across all modalities and conditions. We have also improved our 
computational analysis strategy to define major cell types and sub-clusters across all samples 
and modalities. To provide evidence that cell type compositions are stable between 
technologies in the analysed samples, we leveraged cell type quantification provided by the 
different technologies used (single nuclei RNA-seq and ATAC-seq, and deconvolution of 
spatial transcriptomics data). All major cardiac cell types were represented in both snRNA and 
snATAC technologies (New Extended Data Fig. 5e)  
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Median Spearman correlation of cell-type compositions estimated from sn-RNA-seq and sn-
ATAC-seq data was 0.92, while median Spearman correlation between snRNA-seq and 
snATAC-seq with spatial transcriptomics was 0.83 and 0.75, respectively. In general we 
observed stability between the cell-type compositions of each sample across technologies, 
with exceptions in some ischemic samples (Reply Letter Figure 3). Mean pathway expression 
of BioCarta’s “Death Pathway” and Reactome’s “Regulated cell death Pathway” revealed a 
significant increase in these samples (New Extended Data Fig. 2d).  We report these findings 
in the Results section “An integrative single-nucleus multi-omic map of the human heart” 
where we have added the following paragraph:  
 
“[...] IZ samples had the lowest abundance in nuclei and an enriched cell death and regulated 
necrosis pathway expression suggesting increased necrotic cell death (Extended Data Fig. 
2d). [...]” 
 
 

 
Reply Letter Figure 3. Spearman correlations of cell-type compositions between different 
technologies across all analysed patients (duplicated samples are summarised together). 
 
To support our comparative analyses on cell-compositions between conditions we have 
expanded the number of samples and used the mean compositions across technologies to 
avoid biassing towards a single technology or sample (including snRNA-seq, snATAC-seq 
and spatial transcriptomics in New Fig. 2i). Moreover, to validate compositional changes of 
cell-states of cardiomyocytes and myeloid cells, we performed quantification using in-situ 
hybridization (RNAscope) targeting failing ventricular cardiomyocytes 3 (NPPB +) and SPP1 
+ macrophages (New Figs 4c, 6n, New Extended Data Figs. 9d, 14n). 
 
 
4. It is not clear what the authors mean by stating “our integrative single-cell analysis defined 
a consistent and non-redundant catalog of cell types that comprise the adult human heart”. 
Indeed, there is considerable variability between the samples and the fact that the authors 
used label transfer to annotate the snATACseq data makes the catalogue redundant between 
the modalities.  
 
We apologise for this unclear statement and appreciate this question. We have improved our 
computational workflow to identify major cell types and sub-clusters across all samples and 
modalities. Briefly, we now integrated the data from all samples and then clustered the cells 
after batch correction for snRNA-seq (New Extended Data Fig. 4b). The clusters were 
annotated based on canonical markers and ten major cell types were uncovered (New Fig. 
1d). We also identified an additional cluster enriched with the cell-cycle marker MKI67 and we 
validated its biological relevance using an independent novel dataset of ischemic heart 
samples (New Extended Data Fig. 4f-g). For snATAC-seq, we also integrated the data and 
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clustered the cells after batch correction (New Extended Data Fig. 5a). The clusters were 
annotated using the same markers as snRNA-seq based on gene activity score estimated by 
ArchR. This identified eight cell types, matching all cell types from snRNA-seq with the 
exception of two rare cell types (i.e., mast cells and adipocytes) (New Fig. 1f-g).  
 
To compare the identified cell types between snRNA-seq and snATAC-seq, we performed 
label transfer and observed a high agreement as measured by adjusted Rand index (ARI = 
0.98) (New Extended Data Fig. 5b). In addition, we also estimated the proportion correlation 
of the cell type per sample between snRNA-seq and snATAC-seq and observed a high 
correlation (New Extended Data Fig. 5d). Finally, we inspected the cell type detection per 
patient across snRNA-seq and snATAC-seq and observed that almost all cell types were 
presented in all samples and modalities (New Extended Fig. 5e). All these results indicated 
that our annotation of major cell types were consistent between samples and modalities. 
 
Of note, we observed that snATAC-seq data tend to show a lower cell coverage (total cell 
number) compared to in-parallel generated single cell RNA-seq datasets. One explanation 
could be that for the snATAC-seq reaction (10X Genomics), remaining nuclei after performing 
the snRNA-seq reactions, have to be concentrated in a small buffer volume of 5-10 µl for the 
tagmentation reaction when compared to the snRNA-seq workflow. This process can lead to 
a considerable nuclei loss through centrifugation and resuspension. Indeed, a similar ratio of 
snRNA/snATAC-seq cells (5/1) is also seen in the human fetal cell atlas, which is based on a 
combinatorial indexing protocol (Domcke et al, Science 2020, PMID: 33184180). We have 
now removed the statement from the current manuscript to avoid this confusion and changed 
the text to:   
 
“[...] Together, our integrative analysis of transcriptomic and chromatin accessibility data 
defined a robust catalogue of cell types in the adult human heart across multiple modalities 
and samples.[...]” 
 
5. The Visium platform has a limited size of the capture area. How was the targeted area pre-
selected?  
 
We thank the reviewer for this important question. Overall, 20 of these datasets were 
generated from the left ventricular (LV) free-wall and 11 from LV-apex (New Extended Data 
Fig. 1). The visium target area is 6.5x6.5 mm and the LV wall was for many specimens thicker 
than 6.5 mm, therefore we could not get transmural data. Furthermore, many of the specimens 
were biobanked for years and while the region of the left ventricle was known the directionality 
of the sample within the cryovial of the biobank was not always clear. We performed an 
assessment by an experienced and blinded cardiac pathologist (after H&E staining) to confirm 
the specimen type (ischemic, border zone etc.) and target area. 
 
We have added this description in detail in the Methods section “Human tissue processing 
and screening”. We have now included a diagram from where the samples have been taken 
as suggested by the reviewer and additional macroscopic and microscopic images of all 
samples from which these were available (New Ext. Data Fig. 1). Additionally, we provide all 
available clinical covariate data including location of the biobank, tissue localization, infarct 
location and a detailed pathologists’ description of the tissue annotation in Supplementary 
Table 1 of all H&E stainings of the previous and added spatial transcriptomics datasets. 
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Based on this question we have added the following new paragraph to the revised manuscript: 
 
“[...] We applied an integrative single cell genomics strategy with single nucleus RNA 
sequencing (snRNA-seq) and single nucleus Assay for Transposase-Accessible Chromatin 
sequencing (snATAC-seq) together with spatial transcriptomics from the same tissue mapping 
human cardiac cells in homeostasis and after MI at unprecedented spatial and molecular 
resolution (Fig. 1a-c; Supplementary Table 1). We profiled in total 31 samples from 23 patients 
including four non-transplanted donor hearts as controls and samples from tissues with 
necrotic tissue areas (ischemic zone, IZ), border zone (BZ), and the non-affected left 
ventricular myocardium (remote zone, RZ) of patients with acute MI (Fig. 1a). These acute MI 
specimens were collected from heart tissues obtained at different timepoints after the onset of 
clinical symptoms (chest pain), before the patients received a total artificial heart or a left-
ventricular assist device due to cardiogenic shock and as a bridge to transplantation (Extended 
Data Fig. 1a-c). [...]” 
 
We have also further added the following new paragraph to the methods: 
 
“[...] Heart tissues were sampled by the surgeon and immediately frozen in liquid nitrogen. 
Tissues were dounced in liquid nitrogen and 7-10 mm3 pieces were embedded in O.C.T. 
compound (Tissue-Tek) and frozen on dry-ice. 10 µm cryo tissue sections were HE stained 
and the appropriate tissue regions were selected for further processing. In total 52 human 
tissue samples were screened this way and evaluated by a cardiac pathologist. For RNA 
quality control we minced a 3x3 mm3 heart tissue piece in liquid nitrogen and isolated the RNA 
using Qiagen RNeasy Mini kit (Qiagen) using a proteinase K digestion step as suggested in 
RNeasy Fibrous Tissue Mini Kit (Qiagen, 74704). RNA Integrity Number analysis (Agilent) was 
performed using Bioanalyzer RNA 6000 Nano kits (Agilent, No. 5067). RIN ranged from >2 to 
maximum 8.8. [...]” 
 
6. Instead of relying on the top DEG for the spatial localization of cell types, the authors should 
consider the use of deconvolution tools to better predict the composition of each capture site. 
This should result in a more accurate and unbiased spatial composition of the control and 
diseased hearts.  
 
We appreciate this suggestion and we agree with the reviewer that deconvolution tools can 
better predict the cell-type composition of Visium spots compared to using differential 
expression analysis. Previously robust deconvolution tools were not readily available when we 
analysed our data for the first version of our manuscript. We have now performed 
deconvolution of major cell-types in all of the slides using the annotated integrated snRNA-
seq data from the respective samples with cell2location (Kleshchevnikov et al., Nat Biotech 
2022, PMID: 35027729) (New Fig 1h, Methods Section: “Characterization of spatial 
transcriptomics data sets.”) 
 
By performing deconvolution, we were able to evaluate the biases of nuclei isolation (New 
Extended Data Fig. 5h) and unbiasedly evaluate the spatial organisation of the different cell-
types across patients (section “Modelling tissue organisation of the human heart with spatial 
transcriptomics”, New Fig. 2). The deconvoluted data allowed us to compare the cell-type 
composition of the control and disease hearts (section “Modelling tissue organisation of the 
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human heart with spatial transcriptomics”, New Fig. 2) and todescribe the spatial organisation 
of the subtypes of endothelial cells (section “Analysis of endothelial cell heterogeneity at 
spatial resolution”, New Fig. 5). Additionaly, we associated a “stressed” cardiomyocyte 
functional state to different tissue structures that contain different compositions of vascular 
smooth muscle cells (VSMCs, fibroblasts, myeloid cells or adipocytes (section “Gene-
regulatory and spatial variability of cardiomyocyte states”, New Fig. 1-6).  
 
7. In line, clustering the ST spots and subsequent annotation based on marker gene 
expression of selected cells type is a very hypothesis-driven strategy that could be strongly 
biased and exclude additional biological and potentially clinical relevant interpretation. Hence, 
the interpretation of the ST data (e.g. Figure 3) should follow a more data-driven strategy, such 
as spot deconvolution based on the matched snRNAseq datasets.  
 
We agree with the reviewer and appreciate the suggestion. As mentioned in the previous 
response, we have performed deconvolution of the spatial transcriptomics slides to better 
quantify the cell-type compositions in each location.  
 
In the revised manuscript, we have now performed integration and clustering of the spatial 
transcriptomics spots of all of the slides to identify shared molecular niches between the slides 
(New Figs. 2-3). We hypothesised that these niches represent potential structural building 
blocks that are shared between different slides and could facilitate patient comparison. We 
built two different definitions of these niches based on either i) cell-type compositions, 
leveraging the deconvolution results, or on ii) the expression of shared variable genes across 
slides, defined as molecular niches. 
 
Although both representations allowed us to identify differential compositions of fibrotic, 
inflammatory and myogenic tissue structures between sample groups, only the niches 
described by gene expression i.e. molecular niches, were able to capture differences between 
remote zones, border zones and control samples (New Fig. 3g-i). Furthermore the molecular 
niches defined distinct vascular structures including a molecular niche comprising VSMCs and 
endothelial cells/pericyte (niche 10 and 11, respectively)(New Fig. 3a-c).  
 
We discuss the utility of both niche representations in two new results sections of the 
manuscript: “Structural and compositional variation of histological human cardiac tissue 
classifications” and “Identification of disease specific cardiomyocyte states” (New Figs. 2-3). 
 
8. The interpretation and validation of the endothelial cell states is confusing. No detailed 
interpretation is added for Endo2 and the selection of ISH markers is not clearly related to 
previous described cell state markers. In general, the MISTy analysis is intriguing and an 
additional validation of the co-localisation between Fibro2 and Macro2 would further underline 
the validity of the predictions.  
 
We thank the reviewer for this point and apologise for the confusion. The in-situ hybridisation 
markers presented in our previous Extended Data Fig. 5f (New Extended Data Fig. 11c),  were 
selected to capture arterial and endocardial endothelial cells. We revised our analyses and 
the entire manuscript to make the description of endothelial cells clearer and have included 
the results in a new section: “Analysis of endothelial cell heterogeneity at spatial resolution” 
(New Fig. 5).  
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In this section we described with our expanded data a redefined collection of “[...] 5 subtypes 
of endothelial cells from all major vascular beds, namely capillary endothelial cells (FABP5, 
FLT1, and AQP1), arterial endothelial cells (SEMA3G, PCSK5, and GJA5), venous endothelial 
cells (ACKR1, TPO, and FAM155A), lymphatic (MMRN1, FLT4, and PROX1) and endocardial 
endothelial cells (NRG3, POSTN, and PKHD1L1)”. These subtypes were obtained by co-
embedding and clustering  the snRNA- and snATAC-seq data after correction of batch effects 
(New Fig. 5a-c, New Extended Data Fig. 11a). We used immunofluorescent staining of 
SEMA3G (marker of arteriolar endothelial cells) and ACTA2 (marker of vascular smooth 
muscle cells) in order to validate that indeed SEMA3G is a protein expressed by arteriolar 
endothelial cells in our cardiac tissues (New Extended Data Fig. 11c) as previously suggested 
in Litvinuková et al. (Nature 2020, PMID: 32971526). For the endocardial endothelial cells we 
combined POSTN and PECAM1 (pan-endothelial cells marker) for an in-situ hybridization 
validation (New Extended Data Fig. 11c). Lymphatic endothelial cells expressed bona fide 
lymphatic marker genes (for example PROX1) as described e.g. in Wilting et al. (FASEB 
Journal 2002, PMID:12060670). 
 
We have expanded the description of all endothelial cell subtypes by identifying unique 
epigenetic profiles of all endothelial cell-types and described their spatial distribution with other 
cell-types leveraging our spatial transcriptomics data (New Figs. 5a-c; New Extended Data 
Fig. 11b-c). Our spatial analyses validated the expected colocalization of venous endothelial 
cells with vascular smooth muscle cells, and the distribution of capillary endothelial in areas 
enriched with pericytes and cardiomyocytes (New Fig. 5e-g). Moreover, we performed 
comparative analysis of capillary endothelial cells between our different sample groups, 
suggesting a significant reduction in capillary endothelial cells in ischemic samples and an 
increased cell proportion of lymphatic endothelial cells which fits to the overall hypoxic and 
inflammatory environment of these samples. 
 
Regarding the Fibro2 and Macro2 colocalization, we have expanded our analysis by modelling 
the spatial interactions of fibroblast and myeloid states across all slides using MISTy (results 
section “Spatial organisation of  fibro-myeloid cell states in cardiac remodelling”, New Fig. 6l-
n). First, we redefined the cell-states of myeloid and fibroblast populations using co-
embedding and clustering of the expanded snRNA- and snATAC-seq data after batch 
correction (New Fig. 6a, New Fig. 6j). Next we fitted a MISTy model to predict the marker 
expression of fibroblasts cell-states in terms of the expression of markers of myeloid cell-states 
in regions of interest enriched by fibroblasts (see new methods section: “Estimation of the 
impacts of the spatial context in gene expression”) (New Fig. 6l, New Extended Data Fig. 15a). 
We found that SPP1+ macrophages within spots and in the local neighbourhood were the best 
predictors of the fibroblasts’ cell-states, particularly of myofibroblasts (New Fig. 6l, New 
Extended Data Fig. 15a). To further validate the prediction of this spatial colocalization, we 
performed in situ hybridisation experiments in a larger cohort of samples (n= 137 in-situ 
hybridisation slide from n=27 patients) for SPP1, CD163, and POSTN which demonstrated 
close spatial association of these cell types (New Fig. 6n, New Extended Data Fig. 15g).   
 
 
9. The authors argue that the lower gene count in ST and the reduced recovery of cell types 
from ischemic areas is due to an increased cell death. Although this is certainly expected given 
the underlying pathology, do the authors find evidence for such assumption?  
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We appreciate this comment and have performed additional analyses to evaluate the quality 
of ischemic samples.  
 
We revised our sample integration and atlas annotation strategy for both snRNA-Seq and 
snATAC-seq and compared to our initial annotation and, despite low gene counts and reduced 
number of recovered nuclei in ischemic samples, we are now able to identify the eight most 
abundant major cell-types in most of the samples (New Extended data Fig. 5e).  
 
However, to support our assumption that a lower number of nuclei recovered from ischemic 
snRNA-Seq samples is associated with increased cell death, we quantified the transcriptional 
signal of cell-death in the spatial transcriptomics slides across different patient groups (New 
Extended data Fig. 2d). We expected that cell-death and necrosis transcriptional signals would 
be higher in ischemic samples compared to the rest. We added details of the estimation of the 
cell-death and necrosis transcriptional signals in spatial transcriptomics in our methods 
section: 
 
“[...] To associate the differences in nucleus capture in snRNA-seq between the different 
samples to cell-death processes, we leveraged the information from spatial transcriptomics to 
estimate the general expression of genes associated to cell death for each sample. For each 
unfiltered slide we estimated per spot the normalised gene expression of BioCarta’s “Death 
Pathway” and Reactome’s36 “Regulated Necrosis Pathway” using decoupleR’s21 (v1.1.0) 
wmean method. To have a final pathway score per slide, we calculated for each slide the 
mean “pathway expression” across all spots.[...]“ 
 
We observed that ischemic samples in general had higher mean pathway scores of “Death 
Pathway” and “Regulated Necrosis Pathway” compared to the other sample groups (New 
Extended Data Fig. 2d). Moreover, we observed an anticorrelation between the mean number 
of recovered nuclei per group and the mean slide pathway scores for these two gene sets 
(Pearson correlation = -0.938, p-value = 0.0184, for  “Death Pathway”, and Pearson correlation 
= -0.885, p-value = 0.0460 for “Regulated Necrosis Pathway”). In some ischemic slides we 
could also observed an anticorrelation between the number of unique molecular identifiers 
and the pathway scores (Extended data Fig. 2d, right panels). These results support the 
hypothesis that the quality and reduced cell recovery of ischemic samples is likely due to 
increased levels of cell-death. 
 
10. It would be important to validate the zonation of cell type distribution in respect to the 
ischemic and scaring areas in multiple biological replicate samples (i.e. different donors), as 
a key finding in this work, and to extract general conclusion about composition dynamics. 
Some of the zonation events should be validated with alternative cell-resolution methods. This 
would be particularly interesting for the events of neo-angiogenesis and scaring-specific 
fibroblast populations.  
 
We agree with the reviewer and we have considerably expanded the number of samples for 
each region and patient group to perform comparative analyses at the compositional, 
molecular and spatial levels in two new results sections: “Spatial and compositional variation 
of histological human cardiac tissue classifications” (New Fig. 2) and “Molecular variation of 
human cardiac tissue following acute myocardial infarction”  (New Fig. 3). In these sections, 
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we leverage the spatial transcriptomics extended data to describe general patterns of cell-type 
zonation across all conditions and specific remodelling events that occur in ischemic and 
scaring areas in multiple biological replicate samples. Specifically we present the following 
results: 
 
1) Definition of cell-type colocalization niches: By integrating and clustering the spatial 
transcriptomics spots of all slides based on their cell-type compositions, we were able to 
unbiasedly identify nine different cell-type niches that describe myogenic, vascular,  
inflammatory, and fibrotic tissue structures (New Fig 2a-d). We demonstrated that these cell-
type niches can be found in all of the analysed specimens. 
 
2) Spatial dependencies between different cell-types across the samples: We analysed how 
cell-types generally relate to each other across all the analysed samples, by fitting spatially 
contextualised models to predict the abundance of each major cell-type (New Fig. 2e). 
 
“[...] We evaluated three different neighbourhood area sizes using MISTy21: 1) the importance 
of cell-type abundances within a spot (colocalization) (Fig. 2e), 2) in the direct (immediate) 
neighbourhood, and 3) in an extended neighbourhood that expanded to a radius of 15 spots. 
We observed that endothelial cells were the most predictive of the abundance of vSMCs, 
pericytes, adipocytes, and cardiomyocytes within all spots, likely reflecting dependencies 
between cell types of the vasculature (Fig. 2e). Lymphoid and myeloid cells showed strong 
dependencies with each other in line with zones of immune cell infiltration and inflammation - 
similarly captured by cell-type niche 5 (Fig. 2e). [...] “ 
 
“[...] Interestingly, we observed strong dependencies between myeloid cells and fibroblasts, 
which were strongly co-enriched in niche 4  (Fig. 2e, Extended Data Fig. 6e),  in line with a 
known important role of macrophages in fibroblast activation22 and fibroblasts in macrophage 
attraction23. Between immediate and extended neighbouring spots (Extended Data Fig. 6f-h) 
we observed stronger dependencies between cells associated with the cardiac vasculature 
(vSMCs, EC, PC, Fibs) indicating that the vascular myocardial cell network dominates cardiac 
tissue structure organisation. [...] ” 
 
3) Identification of differential spatial cell-type dependencies between myogenic, fibrotic, and 
ischemic sample groups: 
 
“[...] To this end we contrasted the previously computed MISTy importances of each major 
cell-type in predicting the others in the three different neighbourhood area sizes 
(colocalization, immediate and extended neighbourhood) between the three different sample 
groups (Extended Data Fig. 7h). We observed an increased spatial dependency in the 
immediate neighbourhood between lymphoid and myeloid cells in ischemic samples 
compared to myogenic-enriched samples, reflecting the expected role that immune cell 
interactions have of on cardiac repair following myocardial infarction28(Extended Data Fig. 7i). 
Moreover, an increased colocalization of cardiomyocytes and pericytes in fibrotic-enriched 
samples revealed an exclusion of pericytes from scar tissue areas (Fig. 2j). Similarly, the 
distribution of fibroblasts was better predicted by the presence of vSMCs in the immediate 
neighbourhood only in myogenic-enriched samples, where fibroblasts surrounded the 
vasculature29, compared to ischemic and fibrotic tissue specimens, where more extensive 
tissue scarring processes were captured (Fig. 2k).“ [...] 
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4) Differential compositions of cell-type niches: 
 
“[...] We next compared compositions of cell-type niches between groups and observed 
differences in six out of nine cell-type niches (Fig 2l-o; Extended Data Fig. 7j). Cell-type niche 
8 (Fig. 2m) and 9 (Extended Data Fig. 7k), mostly representing cardiac muscle structures, 
were more present in myogenic- and fibrotic-enriched samples compared to ischemic-
enriched samples, while cell-type niche 7, enriched in CM and pericytes (Fig. 2l), was reduced 
in fibrotic-enriched samples. Niche 4, mainly associated with fibrotic structures (more 
fibroblasts than myeloid cells and thus termed fibrotic-niche), was observed in higher 
proportions in fibrotic-enriched samples (Fig. 2n), while niche 5 (more myeloid cells than 
fibroblasts and thus termed inflammatory-niche) was mainly present in ischemic-enriched 
samples (Fig. 2o).” 
 
Moreover, we describe in three new sections the functional states of cardiomyocytes, 
endothelial cells, fibroblasts and myeloid cells (“Identification of disease specific 
cardiomyocyte states” in New Fig. 4, “Analysis of endothelial cell heterogeneity at spatial 
resolution” in New Fig. 5, and “Spatial organisation of  fibro-myeloid cell states in cardiac 
remodelling” in New Fig. 6). In these sections we characterise the epigenetic and 
transcriptional differences of each cell-state. We evaluated how cardiac cell states are 
influenced by their tissue microenvironment and for disease-relevant cell-states we performed 
validations using in-situ hybridization. Specifically, we present the following results: 
 
1) Identification of a stressed cardiomyocyte cell-state that was overrepresented in ischemic 
samples (New Fig. 4a-d). Validation of differential state compositions was performed in a 
collection of 98 images from 17 patients with in-situ hybridisation (New Fig. 4c)  
 
“[...] To further investigate distinct CM-states, we aimed to understand the molecular 
heterogeneity of cardiomyocytes after myocardial infarction. We co-embedded the snRNA-
seq and snATAC-seq data from cardiomyocytes into a common low-dimensional space and 
clustered the cells (Extended Data Fig. 9a). This uncovered five cell-states of cardiomyocytes 
(vCM1-vCM5), spanning multiple samples, regions, and modalities (Fig. 4a). [...]” 
 
  “[...] Cellular composition comparison between sample groups revealed that vCM1  was 
associated with myogenic-enriched samples and vCM3 was significantly associated with 
ischemic-enriched samples. This was validated in an independent cohort using in-situ 
hybridisation, suggesting that these CM states represent distinct cellular stress states within 
the acute myocardial infarction phase. (i.e., vCM1; “non-stressed”, vCM2 “pre-stressed” and 
“stressed” vCM3) (Fig. 4c-d; Extended Data Fig. 9h-i).“[...]  
 
2) Differential zonation of the stressed cardiomyocyte state vCM3 across patient groups (New 
Fig. 4k-o).  
 
“[...] We next estimated the cell dependencies of the stressed cardiomyocyte state -vCM3 with 
other cell types within each spatial spot and its local neighbourhood (radius of 5 spots) 
between sample groups (Fig. 4k-o). We observed that the importance of vSMCs in predicting 
vCM3 within a spot was higher in myogenic and ischemic samples (Fig. 4k), while the 
importance of fibroblasts and myeloid cells increased in fibrotic samples (Fig. 4k). The local 
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neighbourhood modelling of vCM3 revealed that the abundance of fibroblasts better explained 
vCM3 in myogenic enriched samples compared to fibrotic samples (Fig. 4l, Extended data Fig. 
10i). To gain further insight, we visualised the dependencies of vSMCs and fibroblasts with 
vCM3 in myogenic enriched samples, and observed that their co-localization occurred in the 
perivascular niches (Fig. 4n). Overall this demonstrates that the “stressed” CM-state vCM3 
occurs in the perivascular niche of larger blood vessels, highlighting the interaction of 
mesenchymal cells49 of the perivascular niche with stressed cardiomyocytes in this tissue 
area. Furthermore we noticed that when comparing RZ with control samples, stressed vCM3s 
are best predicted by myeloid cells (Fig. 4o). This underlines the importance of immune-CM 
interactions that could additionally explain the increased arrhythmia susceptibility in the remote 
regions of the post-infarct heart, since it has been shown that cardiac macrophages influence 
normal and aberrant cardiac conduction50,51. Our results showed that the “stressed”-CM-vCM3 
can be found in distinct spatial cell-type neighbourhoods enriched by different compositions of 
vSMCs, fibroblasts, adipocytes or myeloid cells.”[...]   
 
3) Differential compositions of capillary and lymphatic endothelial cells between patient 
groups. 
 
“[...] Co-embedding of snRNA- and snATAC-seq data identified 5 subtypes of endothelial cells 
from all major vascular beds, namely capillary endothelial cells, arterial endothelial cells, 
venous endothelial cells, lymphatic and endocardial endothelial cells (Fig. 5a-b; Extend Data 
Fig. 11a-b). Subtype-based pseudo bulk ATAC-seq signals also revealed distinct chromatin 
accessibility of these marker genes (Fig. 5c). Based on our analysis, POSTN was a 
characteristic marker for endocardial EC which we validated by smFISH (Extended Data Fig. 
11c). Analysis of cell proportion among  the myogenic-enriched, ischemic-enriched, and 
fibrotic enriched samples revealed a reduction of capillary endothelial cells in the ischemic 
samples associated with a concordant increase in venous endothelial cells (Fig. 5d; Extend 
Data Fig. 11d-e). Furthermore, we observed that lymphatic endothelial cells were overall less 
abundant than the other populations, as expected, but were significantly increased in the IZ, 
suggesting increased abundance of lymphatics  modulating  the immune response following 
cardiac injury52 (Fig. 5d).“[...]  
 
Analysis of our novel integrated data now demonstrates a significant increase in lymphatic 
endothelial cells in the ischemic zone samples, thus highlighting neo-lymphangiogenesis in 
this specific tissue zone following acute myocardial infarction (New Fig. 5d). It has previously 
been shown that the immune-cell lymphatic endothelial cell cross-talk impacts cardiac 
recovery after myocardial infarction (Haussari et al., Atheriosclerosis, Thrombosis and 
Vascular Biology 2020, PMID:32404007). Spatial modelling of lymphatic endothelial cells in 
our human data indeed recovered a dependency with myeloid cells, but additionally with 
fibroblasts (Extended Data Fig. 11f). 
 
4) Zonation of endothelial cells subtypes across patients 
 
“[...] We modelled the association of the different endothelial cell subtypes with the 
abundances of the other major cell-types in spatial transcriptomics. We observed that the 
markers of arterial endothelial cells were best predicted by vSMCs within a spot and in the 
local neighbourhood (radius of 15 spots) reflecting the anatomy of arterioles in the heart (Fig. 
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5e-f; Extended Data Fig. 11f). Moreover, the expression of markers of capillary endothelial 
cells were best predicted by the presence of pericytes in the tissue in line with the known 
presence and role of pericytes in direct contact to capillary endothelium53(Fig. 5g).” 
 
5) Identification of differential compositions of SPP1+ macrophages in ischemic samples (New 
Fig. 6n,  New Extended Data 14h+n) and colocalization events with myofibroblasts (Fib2) from 
spatial transcriptomics. Validations of the zonation events were performed in a collection of 
137 images from 26 patients using in-situ hybridisation, which recapitulated the defined cell 
states and their spatial interaction in ischemic zones of human myocardial infarction. 
 
Overall we have performed comparative efforts between different patient groups using spatial 
data and orthogonal, experimental validations to describe zonations of cell-types associated 
with myocardial remodelling.   
 
11. Integration efforts of the snATAC data to extract regulatory and mechanistic information is 
very sparse and anecdotal. Here, the authors should make an effort to better explain 
regulatory activity responsible for the tissue remodelling. 
 
We appreciate the suggestion and agree with the reviewer that the efforts of integrating 
snATAC-seq and snRNA-seq were sparse in our previous manuscript.  
 
We have now revised our computational analysis for snATAC-seq data as follows: 

● We integrated and clustered the snATAC-seq data from all samples (New Extended 
Data Fig. 5a). Clusters were annotated based on gene activity score and eight major 
cell types were identified (New Fig. 1f-g). 

● We performed differential footprinting analysis using HINT-ATAC (Li, et al., Nat Com 
2019. PMID: 30808370) based on cell-type-specific pseudo-bulk ATAC-seq profiles to 
compare the TF binding activity between major cell types (New Extended Data Fig. 5f).  

● We associated genetic variants with cell types by enrichment analysis using 
cardiomyopathy-related SNPs obtained from GWAS analysis (Pirruccello JP, et al. 
2020. PMID: 32382064) and mapped this information to spatial transcriptomics (New 
Extended Data Fig. 5i-j) as suggested by the Reviewer #4. 

● We integrated the snRNA-seq and snATAC-seq data for cardiomyocytes, endothelial 
cells, fibroblasts and myeloid cells, and performed sub-clustering (New Extended Data 
Fig. 9a; New Extended Data Fig. 11a; New Extended Data Fig. 12a; New Extended 
Data Fig. 14a). This analysis uncovered a distinct number of cell states and subtypes 
for the above-mentioned major cell types (New Fig. 4a; New Fig. 5a; New Fig. 6a; New 
Fig. 6j). The statistical results regarding sub-clustering are provided in Supplementary 
Table 16. 

 
To better identify regulatory changes responsible for tissue remodelling, as also suggested by 
reviewer #1, we built enhancer-based gene regulatory (eGRN) networks for cardiomyocytes 
and fibroblasts based on the integrated snRNA-seq and snATAC-seq by combining 
information from TF binding activity from snATAC-seq, TF expression from snRNA-seq, 
enhancer-to-promoter links as predicted by snRNA-seq and snATAC-seq, and target gene 
expression from snRNA-seq data (New Figs. 4h-j, 6g-h). A schematic of the enhancer-based 
gene regulatory network is provided in New Extended Data Fig. 10b. For the CM the eGRN 
analysis revealed several interesting factors which regulate different CM-state. The GRN 
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analysis revealed 3 modules corresponding to the three CM-states included in the analysis 
(vCM1-3) (New Extended Data Fig. 10e). Among the transcription factors regulating the CM-
states were NR3C2, also called mineralocorticoid receptor, MEF2D and ATF3, both stressed 
induced factors responding to cardiac injury (Kim et al., JCI 2007, PMID: 18079970; Hai et al., 
Gene Expr. 199, PMID 10440233; Kalfon, Cardiovasc Res. 2017, PMID 28082453). Our 
analysis of the binding activity of this TF along pseudotime revealed a decrease in binding 
activity with a concordant decline in gene expression of NR3C2 itself. Mapping of the NR3C2 
target gene expression in our spatial transcriptomic slides demonstrated gradual changes of 
target gene expression of the identified factors e.g. in the broderzone of spatial transcriptomics 
slides (Fig. 4j). Additionally, for fibroblast we built quantitative enhancer-based gene regulatory 
networks (eGRN)(New Fig. 6g-h). We identified important putative regulators (i.e., TFs) based 
on our network analysis of fibroblast to myofibroblast differentiation and highlighted the 
putative role of KLF4, TEAD3, GLI2 and RUNX2 (New Fig. 6 g-i, New Extended Data Fig. 13a-
d). In summary we identified important putative regulators (i.e., TFs) using network analysis. 
We were able to map predicted TFs of distinct cardiomyocyte and fibroblast cell states and 
target genes into space to support their role in cardiac remodelling and fibrogenesis.     
 
12. The central regulatory role of NFE2L1 in cardiomyocytes 1 is intriguing, but entirely based 
on correlation analysis and prediction based on binding motifs. Since the authors highlight 
NFE2L1 as potential key regulator to derive disease-specific cardiomyocyte subpopulations, 
an experimental validation of the regulatory role of NFE2L1 in cardiomyocytes would be 
appreciated.  

 
We thank the reviewer for this important point. We previously selected NEF2L1 (Nrf1) by first 
predicting the transcription factor binding sites (TFBSs) and then comparing the chromatin 
accessibility of these TFBSs between different cell types as measured by the snATAC-seq 
data. This analysis identified NFE2L1 as an important regulator for one of the cardiomyocyte 
sub-populations (Old Fig. 4e-f). Now, by using our extended dataset, we again observed that 
this TF showed higher chromatin accessibility around the binding sites in the newly defined 
“stressed”-CM vCM3 state compared to other cardiomyocytes, consistent with our previous 
results (Reply Letter Fig. 4a). 
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Reply Letter Fig. 4  (a). Footprinting profile of NFE2L1 between different cardiomyocyte cell 
states. The x-axis represents the distance from the NFE2L1 motif centre and the y-axis 
represents the average ATAC-seq signal around the predicted binding sites of NFE2L1. 
Colours refer to different cell states. (b). Violin plot showing the gene expression of NFE2L1 
between different cardiomyocyte cell states based on the snRNA-seq data. (c). 
Representative In-situ hybridisation of NFE2L1 on human cardiac tissue sections. Note that in 
stress-marker positive (ANKRD1)-tissue areas NFE2L1 was undetected.   
 
As this approach was solely based on chromatin accessibility data and motif prediction, it can 
generate false positives. For example, we observed that NFE2L1 showed no clear differences 
of gene expression between different cardiomyocyte states (Reply Letter Fig. 4b). We 
additionally performed in-situ hybridisation of NFE2L1 (RNAscope) on human myocardial 
tissues after acute myocardial infarction but were unable to detect NFE2L1 (Reply Letter Fig. 
4c). Moreover, in a recent study (published after the initial submission of our work), the role of 
NFE2L1 was thoroughly studied and the authors demonstrated that NFE2L1 encodes for the 
stress-responsive transcription factor Nrf1 in cardiomyocytes and that NFE2L1 
overexpression protected the adult mouse heart from ischemia-reperfusion injury (Cui et al., 
Nature Commun 2021 PMID:34489413).  
 
Therefore, in our revised manuscript, we have improved our computational analysis to build a 
quantitative gene regulatory network (GRN) by including TF binding activity from snATAC-seq 
and TF expression from snRNA-seq data (New Extended Data Fig. 10b). Moreover, we also 
incorporated the expression of target genes which were predicted by using enhancer-to-
promoter links and motif binding sites. Our current GRN analysis of human cardiomyocytes 
pinpointed several interesting regulators (New Fig. 4h). For example, we identified the 
mineralocorticoid receptor (MR, NR3C2), a main target of common heart failure treatment, as 
a major regulator of  the vCM1 state (New Fig. 4h). For this reason, we now removed NFE2L1 
from the revised version of our manuscript. 
  
Minor:  
This statement is too broad for the related section: “In summary, the data indicated distinct 
spatial gene regulation in response to the ischemia associated cell-death with gene regulation 
driving the acute cardiac injury response.” 
 
We agree with the reviewer and apologise for this general statement. We have now removed 
this statement from the text entirely. Since we now performed integrative analysis of three 
defined patient groups, we have additionally rewritten the previous section entirely headed 
“Demarcation of the ischemic zone visualised by distinct gene expression and regulation”.  
  
 
Referee #3: 
This study by Kuppe et al. investigates the cellular and local gene expression changes in 
response to ischemic injury in human heart samples at different time points after injury. They 
do so by performing single cell sequencing, ATAC sequencing and spatial transcriptomic 
profiling and different bioinformatic approaches to further mine the data.  
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While these are all state-of-the art methods and bioinformatic approaches that provide 
insightful data there are currently several issues with the experimental design and the 
presented data that make it difficult to determine the value and generalizability of the findings.  
 
We thank the reviewer and appreciate the overall positive comments. In order to increase the 
generalizability of the findings and the value of this multiomic atlas of human myocardial 
infarction we have now increased the number of tissue samples in this study from initially 8 to 
28 from 20 patients over four different cardiac tissue regions, as well as control samples 
(control = 4, ischemic region = 12, border zone = 3, remote zone = 6, fibrotic zone = 6) and 
additionally 3 snRNA-Seq datasets from human acute MI for cross-validation.  28 of these 
samples have a multi-omic profiling with single nuclei (sn) RNA-seq, snATAC-seq, and spatial 
transcriptomics. 
 
To address the reviewer's concerns, we have now added a thorough description of sampling 
location and annotations from a cardiac pathologist and performed multiple in-situ 
hybridizations and quantification for validation of our findings (New Extended Data Fig. 1-3, 
New Supplementary Table 1). In addition, we also included scRNA-seq from a myocardial 
infarction time-course lineage tracing experiment of PDGFRβ-reporter mice at distinct time 
points after MI which was used in our trajectory analysis for myofibroblasts differentiation (New 
Extended Data Fig. 12i-l).  
 
We systematically compared our data with previously published datasets (heart cell atlas) and 
an external dataset of human myocardial infarction (snRNA-seq) which both demonstrated 
high correlations (New Extended Fig. 4e-g).  
 
To further increase the value we have now made all data publically accessible (HCA and 
cellxgene), which represents a high contribution to the cardiovascular research field. 
(https://cellxgene.cziscience.com/collections/8191c283-0816-424b-9b61-
c3e1d6258a77/private)       
 
Major comments  
- A major concern is the reproducibility and validity of the data. The authors have an n=1 for 
the different conditions (including control), except for the time point more immediate after 
myocardial infarction. Here they have tissue from both 2 and 5 days after infarction that 
represent the more immediate response after injury, however these samples seem to vary a 
lot from each other in cellular composition, local remodeling and gene expression changes 
and are also representing different regions.  
 
We thank the reviewer for this important point. For this reason, we have increased the number 
of tissue samples in this study from initially 8 to now 28 from 20 patients over four different 
cardiac tissue regions, as well as control samples (control = 4, ischemic region = 12, border 
zone = 3, remote zone = 6, fibrotic zone = 6) and additionally 3 snRNA-Seq datasets from 
human acute MI IZ sections for cross-validation. 28 of these samples have a multi-omic 
profiling with single nuclei (sn) RNA-seq, snATAC-seq, and spatial transcriptomics (New Fig. 
1a; New Extended Data Fig. 1-3). In addition, we also included scRNA-seq from a myocardial 
infarction time-course lineage tracing experiment of Pdgfrβ-reporter mice at distinct time points 
after MI which was used in our trajectory analysis for myofibroblasts differentiation (New 
Extended Data Fig. 12i-l).  
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This extended dataset, with multiple biological replicates per condition, allowed us to describe 
heart remodelling processes by performing quantitative comparisons of the different sample 
groups at the compositional, molecular, and spatial levels, as the reviewer suggested. We 
have included these results in two new sections: “Spatial and compositional variation of 
histological human cardiac tissue classifications” (New Fig. 2h-o) and “Molecular variation of 
human cardiac tissue following acute myocardial infarction” (New Fig. 3e-i). Additionally, we 
have redefined the sub-clusters for several major cell-types including cardiomyocytes (New 
Fig. 4), endothelial cells (New Fig. 5), fibroblasts, and myeloid cells (New Fig. 6) by integrating 
snRNA-seq and snATAC-seq from all samples and associated them with the different disease 
stages. 
 
We also mapped the different functional states of cell-types to spatial transcriptomics to 
investigate their spatial relationship with other major cell types and their changes in different 
patient groups (New Figs. 4k-o, 5e, 6l). The top 10 differentially expressed genes of the newly 
described cardiomyocytes-states vCM1-5 are shown in New Extended Data Figure 9b and the 
complete results are provided in New Supplementary Table 10.  We included these results in 
three new sections: “Identification of disease specific cardiomyocyte states ” (New Fig. 4), 
“Analysis of endothelial cell heterogeneity at spatial resolution ” (New Fig. 5), and “Spatial 
organisation of  fibro-myeloid cell states in cardiac remodelling” (New Fig. 6). 
 
- Is the sample for spatial transcriptomic take transmurally? The manuscript would benefit from 
a better description of the exact sample collection procedure.  
 
We agree with the reviewer and have significantly improved the sample location description 
and annotation of the cardiac regions in the new version of the manuscript. Overall, 20 of these 
datasets were generated from the left ventricular free-wall and 11 from LV-apex. The visium 
target area is 6.5x6.5mm and the left ventricular wall was for many specimens thicker than 
6.5mm, therefore we could not get transmural data. Furthermore, many of the specimens used 
were biobanked for years and while the region of the left ventricle was known the directionality 
of the sample within the cryovial of the biobank was not always clear. We performed an 
assessment by an experienced and blinded cardiac pathologist (after H&E staining) to confirm 
the specimen type (ischemic, border zone etc.) and target area. 
 
We added this description in detail now to the Methods section (“Human tissue processing 
and screening”. We have however now included a diagram from where the samples have been 
taken as suggested by the reviewer and additional macroscopic and microscopic images of 
all samples from which these were available (New Ext. Data Fig. 1). Additionally, we provide 
all available clinical covariate data including location of the biobank, tissue localization, infarct 
location and a detailed pathologists’ description of the tissue annotation in Supplementary 
Table 1 of all H&E stainings of the previous and added spatial transcriptomics datasets.    
 
- Where are the data for the ischemic zone from patient 3 in Extended Data Figure 1 and 3d?  
 
We apologise that this was not clear enough in our previous manuscript. For this sample, the 
CellRanger pipeline initially reported 68,102 cells from the snRNA-seq library, likely due to 
ambient RNA from necrotic tissue areas (Reply Letter Fig. 5a). We therefore decided to not 
include it in our previous analysis given that this number (68,102) is usually unexpected. 
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In our current manuscript, we have revised our data quality control strategy to filter cells rather 
than samples. Specifically, for each sample we removed nuclei (i)  in the top 1% in terms of 
the number of genes, (ii), with less than 300 genes and less than 500 UMIs, (iii) or more than 
5% of mitochondrial gene expression, and (iv) doublets as estimated using scDblFinder 
(Germain, P. et al., F1000Research 2021, doi: 10.12688/f1000research.73600.1) with default 
parameters. After filtering, we obtained 581 cells for this sample (Supplementary Table 2). We 
next used these cells as input for data integration and clustering (New Extended Data Fig. 4b). 
Annotation of the clusters revealed that this sample included similar cell types as other 
ischemic samples, demonstrating the power of the integrative analysis (New Extended Data 
Fig. 4d). 
 

 
Reply Letter Fig. 5  (a). Barcode rank plot generated by CellRanger pipeline showing cell 
calling results for the snRNA-seq data of the ischemic zone from patient 3. The y-axis is the 
number of UMI counts mapped to each barcode and the x-axis is the number of barcodes 
below that value. 
 
- It is unclear how well the different datasets for patient 2 and 3 overlap. This should be clarified 
more as these are the only 2 patients from the same condition/group. Are the same cell cluster 
found when comparing these 2 patients and are the same gene expression correlations found 
between the 2? It would be better for clarity to compare the same type of analyses for the 
different samples.  
 
We appreciate these comments on patient comparisons in our heart atlas.  We have now 
increased the number of specimens as outlined above and changed the computational 
strategy to allow for comparisons between different patients. Overall, our atlas now contains 
12 ischemic zone samples, compared to 2 in the previous version. Our new integrated data 
now comprises several biological replicates in all major patient groups (New Fig. 2h). This 
allowed us to perform comparative analysis between the specimens in one condition and 
across conditions (New Fig. 2i-o, New Fig. 3-6). The characterization of ischemic samples 
revealed the following: 
 
1) Despite reduced recovery of nuclei and low gene counts in ischemic samples (New 
Extended Data Fig. 2c), we were able to identify in most of the samples 11 major cell-types in 
snRNA-seq and the eight most abundant major cell-types in snATAC-seq (New Extended Data 
Fig. 5e). 
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2) Ischemic samples contained a reduced proportion of cardiomyocytes, and an increased 
proportion of lymphatic, myeloid and cell-cycling cells based on the estimation of cell-type 
compositions across omic modalities (New Fig. 2i). Similar cell-type compositions were 
observed in an external validation dataset of three ischemic patients (New Extended Data Fig. 
4f-g). 
 
3) Increased compositions of an inflammatory cell-type niche in spatial transcriptomics (groups 
of spots with an increased proportion of immune cells colocalized with fibroblasts) compared 
to the other patient groups. Additionally, we observed reduced compositions of myogenic-
related niches (groups of spots with increased cardiomyocyte compositions) (New Fig. 2l-o). 
 
4) In spatial transcriptomics, we observed an increased colocalization of immune cells within 
the spot and in direct neighbours across the tissue, compared to myogenic-enriched or fibrotic-
enriched samples, where the distribution of these cells was less structured (New Extended 
Data Fig. 7h) 
 
5) We observed an increased enrichment of a “stressed” cardiomyocyte cell-state compared 
to myogenic-enriched or fibrotic-enriched samples. These observations were recapitulated in 
an independent cohort of 17 patients, using in-situ hybridisation (number of images = 98) (New 
Fig. 4c).  
 
6) We observed a reduction in the proportions of capillary endothelial cells and an increment 
of lymphatic endothelial cells in ischemic samples compared to the other patient groups (New 
Fig. 5h). Within capillary endothelial cells, we observed increased activities of the hypoxia and 
TGFβ signalling pathways, compared to myogenic enriched samples (New Fig. 5j). 
 
7) Increased compositions of a myofibroblast cell-state (Fib2) (New Fig. 6d) and SPP1+ 
macrophages (New Extended Data Fig. 14f) were observed in ischemic samples compared to 
the other patient groups. Validation of SPP1+ macrophage enrichment in ischemic samples 
was done with an orthogonal data set of 26 patients using in-situ hybridization (137 images) 
(New Fig. 6n, New Extended Data Fig. 15g). Moreover we observed a spatial gradient of the 
colocalization of myofibroblasts and SPP1+ macrophages in spatial transcriptomics (New Fig. 
6m, New Extended Data Fig. 15b). 
 
Overall, our increased data set and revised computational analysis allowed us to describe 
cardiac remodelling events observed in ischemic samples that covered changes in cell-type 
composition and tissue organisation.  
 
- It currently is unclear which portion of the control heart was taken for the analyses.  
 
We thank the reviewer for this important point. We revised our sample description and now 
included all annotations in Supplementary Table 1. We included macroscopic and microscopic 
images of all samples in New Extended Data Fig. 1-3. Overall, 20 of these datasets were 
generated from the LV free-wall and 11 from LV-apex as depicted in New Extended Data Fig. 
1a. The control specimens of non transplanted donor hearts were taken from the LV free-wall 
(New Supplementary Table 1) 
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- The authors combine spatial transcriptomics on a 10um section with snRNA seq and ATAC 
seq from an adjacent portion of the heart. However, the results of these three give very 
different cellular compositions and gene expression profiles. The spatial transcriptomic for 
example shows an overrepresentation of cardiomyocytes (likely because of their size), while 
the cellular composition based on snRNA seq versus ATAC seq also gives a very different 
image (which can for example be seen in Extended Data Fig 3d). What would the Extended 
Data Fig 3d look like for ATAC seq only? If the dataset differ so much it is hard to generate an 
integrative molecular map as the authors indicate in the abstract.  
 
We thank the reviewer for the comment. We agree that in order to provide an integrative 
molecular map of human myocardial infarction, consistent cellular compositions should be 
observed across technologies. In the revised manuscript we have improved our computational 
analysis strategy to define major cell types and sub-clusters across all samples and modalities, 
to ensure consistency in the provided atlas. Together with the increased sample size, we now 
performed a more thorough comparison of the cell-type compositions detected across 
modalities and conditions. 
 
We demonstrated that overall, we could identify in most of the samples and across conditions 
11 major cell-types in the snRNA-seq data. From these cell-types, the eight most abundant 
ones were also recovered in the snATAC-seq (New Extended Data Fig. 5e).  
 
To provide evidence that cell type compositions are stable between technologies in the 
analysed samples, we leveraged cell type quantification provided by the different technologies 
used (snRNA-seq and snATAC-seq, and deconvolution of spatial transcriptomics data). 
Median Spearman correlation of cell-type compositions estimated from sn-RNA-seq and sn-
ATAC-seq data was 0.92, while median Spearman correlation between snRNA-seq and 
snATAC-seq with spatial transcriptomics was 0.83 and 0.75, respectively. In general we 
observed stability between the cell-type compositions of each sample across technologies, 
with exceptions in some ischemic samples (Reply Letter Figure 3, page 12). Mean pathway 
expression of BioCarta’s “Death Pathway” and Reactome’s “Regulated cell death Pathway” 
revealed a significant increase in ischemic samples (New Extended Data Fig. 2d).  
 
To compare the identified cell types between snRNA-seq and snATAC-seq, we performed 
label transfer and observed a high agreement as measured by adjusted Rand index (ARI = 
0.98) (New Extended Data Fig. 5b). To demonstrate that the patient groups contained similar 
expression profiles, we created pseudo-bulk transcriptional profiles of the spatial 
transcriptomics slides and performed hierarchical clustering (New Extended Data Fig. 7f). 
Overall, we observed that samples grouped by their histomorphological region: border zones, 
remote zones, and controls formed one cluster, while ischemic and fibrotic samples formed 
two different clusters.  

Our extended analysis provides evidence to suggest consistency across omics 
modalities of the analysed samples and within patient groups. 
 
- How many cells are roughly represented per spot in the spatial transcriptomics?  
 
We thank the reviewer for this important question. We have now quantified the number of 
nuclei (cells) leveraging the H&E stainings of the spatial transcriptomic sections. We used 
VistoSeq, a matlab pipeline which allowed us to determine the exact nuclei count per visium 
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spatial detection spot. Our quantification revealed a mean value of 4 nuclei per spot (New 
Extended Data Fig. 2c). 
 
- The snRNA seq and ATAC seq data generated on samples taken 2 or 5 days after ischemic 
injury appear to be strongly influenced by the presence of cell death and only 4 cell types can 
be distinguished. However, in looking at extended Data Figure 6e all 4 cell types appear to be 
expressing TNNT2, a cardiomyocyte marker. 
 
We thank the reviewer for this important observation. Indeed, ischemic samples (in the 
previous and current sample collection) are influenced by cell death and necrotic processes 
as expected (New Extended Data Fig. 2d), hence their lower recovery of nuclei and gene 
counts (New Extended Data Fig. 2c). Cell-death leads to autolysis with leaky nuclei and thus 
high ambient RNA, particularly from the dead cells of this area which are many 
cardiomyocytes. This could explain why we observed background expression of TNNT2 in 
these patients. 
 
In our current computational strategy we decided to annotate single nuclei of snRNA-seq by 
integrating and clustering single nuclei after a first round of quality control for each data set 
separately (New Extended Data Fig. 4a). We ensured that the highly variable genes used to 
cluster the integrated data sets were representative of most of the samples, under the 
assumption that this collection of genes will represent cell-type variability rather than technical 
variability (including background signal). With this strategy applied to the extended dataset we 
were able to identify in most of the samples 11 major cell-types in snRNA-Seq. (New Extended 
Data Fig. 5e). Moreover, for the definition of cell-states we performed multimodal integration 
of snRNA-seq and snATAC-seq data of cell-types of interest and performed stricter quality 
controls of nuclei to prioritise biological variability over technical variability. This, together with 
the fact that cell-states were present in all patient groups in different compositions demonstrate 
that although the quality of ischemic samples is different from the other patient groups because 
of cell-death, our current annotation is capturing biological variability that is consistent in 
multiple patients. 
 
Based on this question we have added the following sentence to the discussion of the revised 
manuscript :  
 
“[...] Of note, in the ischemic samples we observed high levels of cell death, as expected, and 
thus also higher levels of ambient RNA  which could introduce a bias in our analyses. [...]” 
 
- While the validation studies in heart failure samples and functional follow-up studies support 
the relevance of the sequencing data, Runx1 has already been linked to TGFb signaling and 
myofibroblast differentiation and fibrosis.  
 
We thank the reviewer for pointing this out. Indeed the link of RUNX1 as being involved in 
myofibroblast differentiation and TGFβ-signalling has been shown before, e.g. in zebrafish 
heart (Koth et al., Development 2020, PMID: 32341028) or in the cell-culture using bone 
marrow-derived mesenchymal stem cells (Kim et al., PNAS 2014, PMID: 25313057). We also 
recently identified and validated a role of RUNX1 in fibroblast to myofibroblast differentiation 
in the mouse kidney (Li et al. Nat. Com. 2021, PMID: 34737275). We therefore agree that this 
finding is not particularly exciting or novel. However, we have provided the first evidence that 
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in human heart fibrosis (Extended Data Fig. 12b) and in human myofibroblast differentiation 
(Extended Data Fig 12d) Runx1 is critically involved. We have now removed the RUNX1 
panels from the main figure (Old Figure 6k,l+n, New Fig. 6) and included the Old Figure Panel 
6n to the New Extended Data 12d).  
 
We have adapted the section on RUNX1 in the manuscript including the two suggested 
references of the reviewer:  
 

“[...] Notably, Fib2 also showed an up-regulation of RUNX1 which we have recently 
reported as being involved in kidney myofibroblast differentiation58. A role of RUNX1 in 
myofibroblast differentiation has been suggested in-vitro using mesenchymal stem cells59 and 
in-vivo in zebrafish heart injury60. Overexpression of RUNX1 in human heart PDGFRb cells 
led to increased myofibroblast differentiation and matrix expression (Extended Data Fig. 12d).  
[...]” 
 
- How do these snRNA seq data compare to previously published studies on human heart 
tissue? 
  
We thank the reviewer for this important question. We now have compared the cell-type 
compositions of our myogenic-enriched samples (remote zones, border zones, and controls) 
with the reported cell-type compositions of the single nuclei samples in the human cell atlas 
by Litvinuková et al. (Nature 2020, PMID: 32971526) (New Extended Data Fig. 4e). We 
observed a Pearson correlation of 0.88 between the median cell-type composition across 
patients of the two datasets (New Extended Data Fig. 4e, right panel). We observed a 
significant overlap between the marker genes inferred from these two datasets for the same 
cell type (New Extended Data Fig. 4e, left panel). Additionally, we compared the cell-type 
compositions of the  ischemic samples with a validation set of three human ischemic samples 
from an independent cohort. Pearson correlation between the median cell-type compositions 
across patients of the two atlases was 0.79 (New Extended Data Fig. 4f-g). Similarly, we 
observed a significant overlap between the marker genes of these two data sets (New 
Extended Data Fig. 4g left panel). These results suggested that strong biases could not be  
detected in our data compared to already published healthy human heart single cell atlas data 
and samples from acute myocardial infarction patients. Overall our comparative analysis 
revealed a high degree of correlation to previously published heart atlases. 
 
Referee #4: 
Tanevski et al report the results of deploying cutting edge spatial and single cell genomics 
analyses on precious, rare human ex vivo cardiac samples derived from individuals post 
myocardial infarction. Certainly the rarity of this sample set, and the promise of the 
technological tools used, intrigued and excited me about the possible biological insights 
offered. However, after reading the paper carefully I remain unsure what the authors have 
actually learned from all of this data generation. Is this paper reporting a biological discovery? 
I do not study heart biology, so I am genuinely uncertain, but the organization of the paper, 
and the details of the claims made (see specific points below) do not suggest that a clear, 
novel insight about myocardial infarction has emerged from this work. And if this biological 
insight has not been gained, and this manuscript is being presented as a reference atlas of 
MI, then greater effort needs to be made in codifying, organizing and releasing these data to 
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the scientific public for consumption (for example, the generation of a web-based tool for 
plotting genes, performing individual analyses, etc).  
 
We thank the reviewer for the positive impression of our work and for acknowledging the rarity 
of the sample included in the study. We also appreciate the reviewer’s valuable suggestions 
and criticisms. With this in mind, we sought to address each of the reviewer’s points below as 
thoroughly as possible. Our goal now is to present a spatial multi-omic map of human 
myocardial infarction, the number one cause of mortality in the world, to the scientific 
community. In order to do that we have increased the number of tissue samples in this atlas 
from initially 8 to 28 from 20 patients over four different cardiac tissue regions, as well as 
control samples (control = 4, ischemic region = 12, border zone = 3, remote zone = 6, fibrotic 
zone = 6) and additionally 3 snRNA-seq datasets from human acute MI and 4 scRNA-seq 
datasets from mice at different time points after MI for cross-validation. As in our previous 
manuscript, now 28 of these samples have a multi-omic profiling with single nuclei (sn) RNA-
seq, snATAC-seq, and spatial transcriptomics. This extended dataset allowed us to describe 
heart remodelling processes by  performing quantitative comparisons of the different sample 
groups at the molecular, compositional and spatial level.  
 
In detail we have now included these results in two new sections: “Spatial and compositional 
variation of histological human cardiac tissue classifications” and “Molecular variation of 
human cardiac tissue following acute myocardial infarction”. We revised the snRNA-seq and 
snATAC-seq data integration to identify major cell types using state-of-the-art methods 
including Harmony and ArchR (as suggested by the reviewers). Instead of annotating the cell 
types sample by sample as in our previous analysis,  for each modality we integrated the data 
from all samples and then clustered the cells. Clusters were annotated independently for 
snRNA-seq and snATAC-seq. To validate major cell-type annotations we performed cross-
modality comparison between snRNA-seq and snATAC-seq data within our samples, and 
between the human heart cell atlas that profiled healthy samples and an external reference 
snRNA-seq data set of ischemic samples (mentioned above) (New Extended Data Fig. 4a,e-
g). We have significantly improved the description of the metadata involving a cardiac 
pathologist who annotated the samples (New Extended Data Fig. 1-3, New Supplementary 
Table 1).   

We additionally performed a transgenic mouse experiment using 
PdgfrβCreER;tdTomato inducible fate tracing of all mesenchymal cells in myocardial infarction 
(LAD ligation) with subsequent scRNA-sequencing of tdTomato sorted (FACS) cells at 
different timepoints (day 0, 4, 7, 14) to compare  (New Extended Data Fig. 12i-l). 

We built quantitative enhancer-based gene regulatory networks (eGRN) using the 
integrated snRNA-seq and snATAC-seq data by combining information from transcription 
factor (TF) binding activity, TF expression, enhancer-to-promoter links, and target gene 
expression for cardiomyocytes (New Fig. 4h-j) and fibroblasts (New Fig. 6g-h). We identified 
important putative regulators (i.e., TFs) using network analysis. We could map predicted TFs 
and target genes into space to support their role in cardiac remodelling and fibrogenesis. 

We have reorganised the manuscript so that the results’ presentation not only 
highlights the richness of the data but also shows how the different combination of omics 
technologies and resolutions can help to describe myocardial remodelling and show the 
relations between cell-type location, organisation and function.  
To make our atlas accessible and the data explorable even for non-computational trained 
researcher we have made the data freely accessible via the HCA and explorable in the 
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cellxgene data portal: (https://cellxgene.cziscience.com/collections/8191c283-0816-424b-
9b61-c3e1d6258a77/private).   
 
 
In general, a lot of analyses presented are suggestive, but not clearly demonstrative, of the 
claims. In particular, there is a logical leap made by the authors between the results of MISTy 
and the conclusion that the genes identified are somehow directly mediating interactions 
between cell types. The algorithm is uncovering spatial correlations at different length scales, 
with certainly could suggest a causal interaction, but may also simply by a correlative effect 
due to, for example, the developmental patterning of the tissue (certain cells get positioned 
closer to others, but do not necessarily interact in a causal fashion). Although certainly many 
of the nominated interactions are intriguing, it’s really hard to know what the reader should do 
with these specific examples, without some sort of perturbation in an animal or organoid model 
to provide support for causal mechanisms.  
 
We thank the reviewer for this observation. We agree that MISTy’s objective is to identify 
spatial interactions between groups of markers (e.g. gene expression) in different scales and 
the results do not necessarily imply any type of causality. In our previous version of the 
manuscript we used MISTy to predict the expression of marker genes of cell-states of interest 
with a collection of cytokines and extracellular matrix related ligands, under the assumption 
that these genes could provide potential mechanistic knowledge on cell communication. We 
agree that MISTy suggests spatial relationships between these collections of genes, but do 
not provide evidence of the causal effect of the predictors in the expression of the cell-state 
marker genes. Given these observations, the limitations of inferring cell communication events 
from transcriptomics data (Dimitrov et al., bioRxiv, DOI: 10.1101/2021.05.21.445160), and the 
difficulties of disentangling patterning events from communication events in spatial 
transcriptomics, in this version of the manuscript we instead used MISTy to exclusively study 
the spatial organisation of cell-types and cell-states in the extended spatial transcriptomics 
slides.  
 
In our revised analysis, we used MISTy to: 

1) Estimate the importance of the abundance of each major cell-type in explaining the 
abundance of the other major cell-types in different spatial contexts (New Fig. 2e, New 
Extended Fig. 6g). This analysis explicitly focused on tissue patterning and allowed for 
the identification of differential cell-type dependencies between patient groups (New. 
Fig 2j-k, New Extended Fig. 7h).  
 

2) Estimate the relationship between the tissue structure and cell functions, encoded as 
signalling pathway activities per spot estimated from gene expression (New. Fig 2f-g, 
New Extended Fig. 7a-c). In this model, we predicted spatial relationships between 
pathway activities and the importances of cell-type abundances in predicting the 
patterns of pathway activities.  

“[...]To link tissue organisation to function, we analysed spatial dependencies between 
signalling pathways and cell-types. Model importances in all spatial contexts captured 
relationships between PI3K and p53 signalling, which showed a mutually exclusive 
spatial distribution. Both pathways were related to the abundance of  cardiomyocytes 
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(Fig. 2f, Extended Data Fig. 7a-c). PI3K signalling in cardiomyocytes controls the 
hypertrophic response to preserve cardiac functions24, while p53 is known to act as a 
master regulator in cardiac homeostasis25. Spatial segregation of these CM-related 
pathways points towards functional CM heterogeneity. We observed colocalized and 
extended neighbourhood relationships of known key pathways in fibrosis including 
TGFβ and NFkB predicted by fibroblasts, and JAK-STAT and NFkB predicted by 
immune cells (Extended Data Fig. 7b-e). Overall, CMs were the best predictor cell-
types of the activities of the estimated pathways. Hypoxia and WNT pathway showed 
a colocalization to CMs in ischemic specimens (Fig. 2g, Extended Data Fig. 7b-e) 
highly consistent with the cardiomyocyte differentiation events occurring after 
myocardial infarction26,27. Our results compiled tissue organisation principles of the 
human heart that relate to coordinated cellular processes and provide a basis for 
comparative analysis.”[...] 

3) Estimate associations between the tissue organisation and the spatial distribution of 
failing cardiomyocytes and the different endothelial and fibroblast cell-states. We 
hypothesised that the distribution of specific cell-states in the spatial transcriptomics 
slides could be modelled by the cell-type composition or cell-state presence of 
individual spots and their neighbourhood. With these models we were able to capture 
known co-localizations of venous endothelial cells, vascular smooth muscle cells, and 
capillary endothelial cells and pericytes (New Fig. 5e-g). Moreover, we describe 
differential spatial correlations of the transcriptional signature of the “stressed” 
cardiomyocyte state vCM3 and the abundance of other cell-types between different 
patient groups. This analysis suggested that the location of this cardiomyocyte state 
can occur in different tissue regions depending on the time point and region after MI 
(New Fig. 4k-o). In relation to fibroblast and myeloid cell-state populations, we 
observed a spatial gradient of myofibroblasts that aligned with a gradient of SPP1+ 
macrophages. We validated this tissue patterning with orthogonal in-situ hybridisations 
in a collection of 137 images from an independent cohort of 26 patients (New Fig. 6l-
n, New Extended Data Fig. 15g). 

With these analyses we aimed to provide to the community a general description of the cell-
type organisation of cardiac tissue and its changes after myocardial infarction. Additionally, 
we demonstrate that cardiac cell-states are associated with their local microenvironment. At 
the same time, we acknowledge that the reported “interactions” are hypotheses that need to 
be tested in follow-up studies to clearly relate the spatial correlations to cell-type 
communications.  

We have adapted the methods section to explicitly state the limitations of the reported spatial 
interactions. 

“[...] The aggregated estimated importances (e.g. median) of each view of all slides were 
interpreted as cell-type dependencies in different spatial contexts, such as colocalization or 
mutual exclusion. Nevertheless, the reported interactions don’t imply any causal relation.” 

In the discussion of our revised manuscript we have also included these limitations: 

“[...] The combination of spatial technologies with single cell data represented an opportunity 
to study how cardiac cell states are influenced by their tissue microenvironment. The 
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nominated interactions between cell-types largely reflect the spatial organisation of the tissue 
and, while many other factors are involved, these interactions provide hypotheses for further 
analysis.” 
 
Here are some specific points where I identified novelty, but where additional follow up work 
might help to bolster it to a solid mechanistic hypothesis:  
 
One very intriguing insight the authors report is the presence of additional molecular/cell state 
heterogeneity in acute MI tissue beyond what can be seen histologically (Fig 4). This seems 
like a great example of how especially the spatial data was able to nominate additional 
molecular processes beyond what can be observed by conventional pathology, but the 
analysis ends at suggestive correlations. Can the authors take this a step further, and perhaps 
nominate a small number of markers for these heterogeneous states, and perform 
immunohistochemistry on a larger set of cardiac MI samples (for example FFPE samples), 
more deeply explore whether there are diagnostic, prognostic, or other clinically relevant 
implications for these different identified cell states?  
 
We thank the reviewer for the positive comments and the important suggestions. We agree 
that our previous data delivered unprecedented insights into remodelling of the human 
myocardium after acute MI beyond what can be observed from histology (Old Fig. 4a+d). We 
agree that a direct transfer of molecular insight of our data is exciting and could lead to novel 
diagnostic, prognostic or therapeutic approaches in the clinics. However, one major issue here 
is that our acute MI specimens are solely from total artificial heart programs or heart transplant 
recipients and thus the clinical outcome of the patients is not associated with the actual data 
we generated, since the patients have received either an artificial heart with subsequent 
transplantation or directly a donor heart. Therefore we can not correlate the data in a 
meaningful way with clinical outcome data directly since the patients included are either 
already deceased or have received an unrelated donor heart by transplantation. 
 
As suggested by the reviewer, we maximised our effort and collaborated with two of the largest 
heart biobanks in Europe to increase our sample number. This increased dataset combined 
with our multiomic approach revealed several novel insights and a better molecular 
understanding of the processes involving human cardiac tissue remodelling after MI, which 
cannot be gained by analysing the histology or single-cell RNA-seq data alone. Our aim is to 
provide a map of human myocardial infarction to the scientific community which is accessible 
through novel online tools (cellxgene and HCA).   
 
Our novel data includes the following major findings with diagnostic, prognostic and clinical 
implications:  

 
1) Identification of a stressed cardiomyocyte cell-state that was overrepresented in ischemic 
samples (New Fig. 4a-d). Validation of differential state compositions was performed in a 
collection of 98 images from 17 patients with in-situ hybridisation (New Fig. 4c)  
 
“[...] To further investigate distinct CM-states, we aimed to understand the molecular 
heterogeneity of cardiomyocytes after myocardial infarction. We co-embedded the snRNA-
seq and snATAC-seq data from cardiomyocytes into a common low-dimensional space and 
clustered the cells (Extended Data Fig. 9a). This uncovered five cell-states of cardiomyocytes 
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(vCM1-vCM5), spanning multiple samples, regions, and modalities (Fig. 4a). [...]” 
 
“[...] Cellular composition comparison between sample groups revealed that vCM1  was 
associated with myogenic-enriched samples and vCM3 was significantly associated with 
ischemic-enriched samples. This was validated in an independent cohort using in-situ 
hybridisation, suggesting that these CM states represent distinct cellular stress states within 
the acute myocardial infarction phase. (i.e., vCM1; “non-stressed”, vCM2 “pre-stressed” and 
“stressed” vCM3) (Fig. 4c-d; Extended Data Fig. 9h-i). [...]”  
 
2) Differential zonation of the stressed cardiomyocyte state vCM3 across patient groups (New 
Fig. 4k-o).  
 
“[...] We next estimated the cell dependencies of the stressed cardiomyocyte state -vCM3 with 
other cell types within each spatial spot and its local neighbourhood (radius of 5 spots) 
between sample groups (Fig. 4k-o). We observed that the importance of vSMCs in predicting 
vCM3 within a spot was higher in myogenic and ischemic samples (Fig. 4k), while the 
importance of fibroblasts and myeloid cells increased in fibrotic samples (Fig. 4k). The local 
neighbourhood modelling of vCM3 revealed that the abundance of fibroblasts better explained 
vCM3 in myogenic enriched samples compared to fibrotic samples (Fig. 4l, Extended data Fig. 
10i). To gain further insight, we visualised the dependencies of vSMCs and fibroblasts with 
vCM3 in myogenic enriched samples, and observed that their co-localization occurred in the 
perivascular niches (Fig. 4n). Overall this demonstrates that the “stressed” CM-state vCM3 
occurs in the perivascular niche of larger blood vessels, highlighting the interaction of 
mesenchymal cells49 of the perivascular niche with stressed cardiomyocytes in this tissue 
area. Furthermore we noticed that when comparing RZ with control samples, stressed vCM3s 
are best predicted by myeloid cells (Fig. 4o). This underlines the importance of immune-CM 
interactions that could additionally explain the increased arrhythmia susceptibility in the remote 
regions of the post-infarct heart, since it has been shown that cardiac macrophages influence 
normal and aberrant cardiac conduction50,51. Our results showed that the “stressed”-CM-vCM3 
can be found in distinct spatial cell-type neighbourhoods enriched by different compositions of 
vSMCs, fibroblasts, adipocytes or myeloid cells. [...]”  
 
3) Cardiomyocyte gene-regulatory network analysis (New Fig. 4h-j)  

“[...] To infer an enhancer-based gene regulatory network (eGRN) we leveraged our 
multi-omics data to further investigate molecular mechanisms differentiating the relevant 
cardiomyocyte states (i.e., vCM1-vCM3) (see Methods). To this end, we paired the cells 
between snATAC-seq and snRNA-seq data and studied gene-regulatory changes along the 
cellular continuum from vCM1 to vCM3 (Extended Data Fig. 10a).  Next, we estimated an 
enhancer mediated TF target network by considering TF activity (snATAC-seq), expression of 
TF and target genes (snRNA-seq), and motif supported peak-to-gene links (Extended Data 
Fig. 10b-d). Clustering of these TFs to the target network revealed three major modules with 
each corresponding to a distinct cardiomyocyte state (Extended Data Fig. 10e). [...]”  
 
4) Fibroblast trajectory and gene-regulatory network analysis (New Fig. 13a-d)   

“[...] To understand the regulatory mechanisms of these stromal cell differentiation 
processes we inferred a fibroblast eGRN (Fig. 6g, Extended Data Fig. 13 a-b). Clustering 
resolved two eGRN modules while each corresponded to a distinct fibroblast state (Extended 
Data Fig. 13c) and identified potential regulators of myofibroblast differentiation (Fig. 6g). 
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Among the transcription factors regulating the Fib1 module was KLF4, which regulates diverse 
cellular functions61 including cellular growth arrest62, and is also one of the original 
reprogramming factors of induced pluripotent stem cells63. Our network analysis highlighted 
the role of KLF4 regulating SCARA5 and PCOLCE2 expression in Fib1, while it also targets 
MBLN1, an important regulator of cardiac wound healing64 and fibroblast to myofibroblast 
transition65. Concordantly, we observed a reduced KLF4 binding activity and reduced SCARA5 
expression in our pseudotime analysis (Fig. 6h), highlighting the role of KLF4 as a putative 
inhibitor of fibroblast activation. Among the transcription factors identified in the Fib2 module 
were TEAD3 (an effector of the Hippo pathway), GLI2 (hedgehog pathway) and RUNX2, which 
have been previously identified as regulators of myofibroblast differentiation66,67 (Fig. 6h, 
Extended Data Fig. 13d-e). [...]”  
 
5) Analysis of myeloid-cell heterogeneity and spatial modelling of fibroblast-myeloid 
interactions and validation using in-situ hybridization on FFPE sections (New Fig. 6g-i, New 
Ext. Data Fig. 13a-d) 
 

“[...] We observed that the presence of SPP1+ macrophages better predicted all 
fibroblasts states compared to other myeloid cell states, with a higher importance for 
myofibroblasts within a spot and in the local neighbourhood (Fig. 6l, Extended Data Fig. 15a). 
Myofibroblasts marker expression aligned with a gradient of expression of the markers of 
SPP1+ macrophages (Fig. 6m). This pattern was also recovered by our cell-type niche 
definition, where the inflammatory niche 5 was surrounded by the fibrotic-rich niche 4 
(Extended Data Fig. 15b), which we could confirm by a higher expression of SPP1+ 
macrophages and myofibroblast marker genes in niche 5 compared to niche 4 (Extended Data 
Fig. 15c).[...]”  
 
6) We are releasing our atlas data via the Human Cell Atlas Initiative (HCA, 
www.humancellatlas.org) and via the explorable data portal of the Chan Zuckerberg Initiative 
(cellxgene, https://cellxgene.cziscience.com/).   
 
The analysis presented does not specifically point towards a graded, pseudotime-ordered 
progression in the fibroblasts. In the UMAP in Fig 6a, I see an unclear trajectory structure, 
perhaps with branching occurring, but it is also possible the pseudotime model is overfitting 
and the actual gene expression landscape is far more complex (multiple distinct populations, 
or multiple transitions occurring within multiple populations). The heat map presented would 
also appear to support this—I do not see a whole lot of marker overlap, but rather what 
appears to be three rather distinct populations with few examples of cells in transition. What 
additional evidence is there to support that these fibroblasts are all progressing along a single 
trajectory?  
 
We thank the reviewer for these important points and acknowledge that there are many 
possible trajectories. Here we focused on myofibroblasts, for which we leveraged our prior 
insights obtained from human and mouse kidney (Kuppe et al., Nature 2021, PMID: 33176333; 
Li et al., Nat Com 2021, PMID: 34737275).  
 
To increase the robustness of our findings as much as possible, we have increased the overall 
dataset to obtain data from different human disease groups (myogenic group comprising 
control specimens, remote zone and border zone as well as ischemic and fibrotic specimens) 
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and time points which allowed us to incorporating temporal information by statistically 
comparing the cellular composition dynamics. For example, we observed that the SCARA5+ 
fibroblasts had the highest proportion in the myogenic samples while POSTN+ myofibroblasts 
were significantly enriched in the ischemic group.   
Furthermore, we have improved our computational strategy in the revised manuscript for this 
analysis as follows: 

● Instead of analysing the snRNA-seq and snATAC-seq data separately (Old Fig. 6a and 
Old Fig. 6h), we integrated the snRNA-seq and snATAC-seq for fibroblasts from all 
samples and performed clustering analysis (New Extended Data Fig. 12a). This 
approach allowed us to define the same sub-clusters (i.e., Fib1-4) shared by multiple 
samples and modalities (New Fig. 6a). 

● To build a trajectory for the differentiation process, we here only included the relevant 
sub-clusters of fibroblasts (i.e., SCARA5+ fibroblasts and POSTN+ myofibroblasts) 
based on our previous works on human and mouse kidney myofibroblasts origins  
(Kuppe et al., Nature 2021, PMID: 33176333; Li et al., Nat Com 2021, PMID: 
34737275) rather than using all of the fibroblasts. 

● We inferred the trajectory using the method from ArchR (Granja et al., Nat Gen 2020, 
PMID: 33633365) based on a diffusion map (Haghverdi et al., Nat Methods 2016, 
PMID: 27571553) (New Fig. 6e). 

 
 
To further understand the differentiation of fibroblasts and as suggested by the Referee #1, 
we performed a transgenic mouse experiment using PdgfrβCreER;tdTomato inducible fate 
tracing of all mesenchymal cells in myocardial infarction (LAD ligation) with subsequent 
scRNA-sequencing of tdTomato sorted (FACS) cells at different timepoints (day 0, 4, 7, 14) 
(New Extended Data Fig. 12i-l). We integrated and clustered the cells from all timepoints. To 
annotate the clusters, we also integrated the mouse and human fibroblasts and performed 
label transfer using Seurat, uncovering three sub-clusters in mouse data (i.e., Fib1-3). (New 
Extended Data Fig. 12m-n). We observed that the Fib1 (SCARA5+) population decreased 
over time while the Fib2 (POSTN+) population increased (New Extended Data Fig. 12o-p).  
 
Based on these observations, we inferred a pseudotime trajectory from Fib1 to Fib2 
(myofibroblasts) in the human samples which was further supported by an increased 
enrichment of extracellular matrix (ECM) score and of ECM-related biological Gene Ontology 
(GO) processes (New Fig. 6e-f; New Extended Data Fig. 12q). Our revised heatmaps of TF 
binding activity, TF expression and gene expression showed a clear transition pattern of 
molecular programs (New Extended Data Fig. 13a-b).  
 
We have adjusted the paper accordingly and the methods section to explain in detail our 
updated trajectory approach which now shows a more graded pseudotime ordered change in 
cell-states of fibroblasts.  
 
“[...] Next, we produced a diffusion map (DM)  and created trajectories in this space using the 
function addTrajectory from ArchR (v1.0.1) [...]”  
 
The final insight of the paper, for which there is one in vitro validation experiment performed—
is the nomination of RUNX1 as a key effector of myofibroblast differentiation. Again, I am not 
in this field, but a quick google search for RUNX1 and myofibroblast did reveal literature that 
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suggests this insight is not entirely novel. For example, how does the observation made by 
the authors meaningfully differ from the work reported in PMID 32341028 and PMID 
25313057?  
 
We agree that the link of RUNX1 being involved in myofibroblast differentiation has been made 
before, in zebrafish heart (Koth et al., Development 2020, PMID: 32341028) or in the cell-
culture using bone marrow-derived mesenchymal stem cells (Kim et al., PNAS 20214, PMID: 
25313057) but not in mammalian myocardial infarction. We also recently identified and 
validated a role of RUNX1 in fibroblast to myofibroblast differentiation in the mouse kidney (Li 
et al. Nat. Com. 2021, PMID: 34737275). We therefore agree that this finding is not particularly 
exciting or novel. However, we have provided the first evidence that RUNX1 is critically 
involved in human heart fibrosis (Extended Data Fig. 12b) and in human myofibroblast 
differentiation (Extended Data Fig 12d). We have now removed the RUNX1 panels from the 
main figure (Old Figure 6k,l+n, New Fig. 6) and included the Old Figure Panel 6n to the New 
Extended Data 12d).  
 
We adapted the section on RUNX1 in the manuscript including the two suggested references 
of the reviewer:  
 
“[...] Notably, Fib2 also showed an up-regulation of RUNX1 which we have recently reported 
as being involved in kidney myofibroblast differentiation58. A role of RUNX1 in myofibroblast 
differentiation has been suggested in-vitro using mesenchymal stem cells59 and in-vivo in 
zebrafish heart injury60. Overexpression of RUNX1 in human heart PDGFRb cells led to 
increased myofibroblast differentiation and matrix expression (Extended Data Fig. 12d) [...]” 
 
Smaller points:  
 
- Some cardiomyocytes are multinucleated. Can the authors comment on how snRNA-seq 
and snATAC-seq might be affected by the (likely) additional correlation between nuclei derived 
from the same cell?  
 
We agree with the reviewer that this is a very interesting question. A study found that about 
25% of all human adult cardiomyocytes are binucleated and about 1% trinucleated (Bergmann 
et al., Cell 2015, PMID 26073943). Previous studies have indicated multiple biological roles of 
polyploid cardiomyocytes including distinct physiological roles like regeneration, higher 
resistance to stress and apoptosis (reviewed in Derk et al. Circulation Research 2020, PMID: 
32078450). However, Yekelchyk et al. (Basic Research Cardiology 2019, PMID: 31399804) 
have performed a single cell study that demonstrated that mono- or multinucleated ventricular 
cardiomyocytes are transcriptionally homogenous.  

Given this transcriptional homogeneity, these multinucleated cardiomyocytes would 
not affect the cell-type and cell-state annotation. One clear effect that multinucleated 
cardiomyocytes will have in the analysis is in the overestimation of the absolute number of 
cardiomyocytes. Nevertheless, all of our compositional analyses are based on proportions, 
which are relative to the analysed sample. 
 
We added the following text to the discussion in our revised manuscript:  
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“[...] Furthermore, we cannot exclude an overestimation of cardiomyocytes in our cell type 
proportion analysis, since 25% of adult human cardiomyocytes are binucleated87, however 
reported to be transcriptionally homogenous88. [...]“ 
 
- Have the authors tried localizing cardiac-associated GWAS signals to their clusters and 
spatial data? This might be an interesting way of leveraging the human data in away that is 
unique, since it may be much harder to make credible conclusions about this from existing 
mouse datasets. 
 
We appreciate this suggestion and we have now included this analysis. We downloaded  
GWAS summary statistics for 4 MRI based left ventricle (LV) function parameters (Pirruccello 
et al., Nat Commun 2020, PMID: 32382064) from the Cardiovascular Disease Knowledge 
Portal (https://cvd.hugeamp.org/)  as we anticipated that SNPs relevant to LV function might 
provide the most biologically relevant information for the cellular composition of myocardial 
tissue. For each phenotype, GWAS summary statistics were clumped with Plink (Chang et al., 
GigaScience 2015, PMID: 25722852) to identify index SNPs using the European samples 
from 1000Genomes as a reference population.  
 
The cell-type-specific GWAS signal enrichment was performed using gchromVAR (Ulirsch, 
Jacob C., et al. 2019, PMID: 32888494) and enrichment scores were normalised to z-scores. 
Our analysis revealed that SNPs associated with stroke volume (SV) and left ventricular end-
diastolic volume were associated with endothelial cells (New Extended Data Fig. 5i). This 
result is consistent with endothelial cell function in cardiac relaxation and dilation (Ruetten et 
al., Cardiovasc Res. 2005, PMID: 15914105). SNPs associated with left-ventricular end-
systolic volume and left ventricle ejection fraction (EF) enriched in cardiomyocytes instead, 
supporting the relationship between contraction and these LV measures. As a next step we 
associated the genetic variants with spatial data by mapping the information to each spot and 
observed spatially distributed GWAS signals, which is in turn associated with the location of 
these cells in space (New Extended Data Fig. 5j).   
 
We added the following text to our revised manuscript: 
 
“[...] To test the association of genetic variants with cell- types, we performed enrichment 
analysis based on cell-type-specific pseudo-bulk ATAC-seq profiles and cardiomyopathy-
related single nucleotide polymorphisms (SNPs) obtained from genome wide association 
analysis (GWAS) studies19. We focussed on SNPs relevant forto left ventricular function since 
we hypothesised that these might provide the most biologically relevant information for the 
cellular composition of myocardial tissue. This analysis revealed that SNPs associated with 
stroke volume (SV) and left ventricular end-diastolic volume were enriched in endothelial cells 
(Extended Data Fig. 5i), consistent with the role of the endothelial cells in cardiac relaxation 
and dilation20. SNPs associated with left ventricular end-systolic volume and left ventricular 
ejection fraction were enriched in cardiomyocytes, supporting the relationship between 
contraction and these left ventricular measures. We also visualised the spatial distribution of 
GWAS signals by mapping SNPs associated with left ventricular ejection fraction to each spot 
from spatial transcriptomics (Extended Data Fig. 5j). In summary, our integrated spatial atlas 
allowed us to map cell-type abundance, signalling pathway activities, TF binding activity, and 
GWAS signals across the complete spectrum of cardiac tissue zonations providing an in-depth 
view at tissue remodelling processes following myocardial infarction in humans.  [...]”   



 

 

 

Reviewer Reports on the First Revision: 

Referees' comments: 
 
Referee #1 (Remarks to the Author): 
 
The authors have extensively revised their manuscript and now have an excellent resource with 
careful analysis to share. 
 
 
Referee #2 (Remarks to the Author): 
 
The authors made an excellent effort to address all my comment. I have no further concerns and 
support publication of the manuscript. 
 
 
Referee #3 (Remarks to the Author): 
 
By adding more samples and expanding on the depth of the analyses and clarification the authors 
we able to improve the manuscript significantly. Although the biological follow up remains a bit 
limited, the study will likely serve as a relevant data source for many other investigators. 
In this updated version the authors were able to answer most issues that were raised by the 
reviewers and there are no further comments 
 
 
Referee #4 (Remarks to the Author): 
 
The authors have submitted an extensively revised manuscript, more than doubling their sample 
size, adding additional data modalities, and refining a lot of analyses that in the original submission 
were not imperfect or incomplete. They have also made their data available on a site that enables 
interaction with the data. They have satisfied my concerns and I see this as likely to be a very 
important and informative resource for the cardiovascular biology community. 
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